
Document Metadata

• Creators: @ned; @theoretical
• Developers: @theoretical; @vandeberg; @youkaicountry; @stevegerbino
• Contributors: @vandeberg; @valzav; @youkaicountry; @justinw; @goldibex; et al.
• Sketch designs: @pkattera

A Token Protocol for Content Websites, Applications, Online
Communities and Guilds Seeking Funding, Monetization and

Smart Media Tokens

User Growth

Several popular token protocols, such as Ethereum’s ERC-20, allow you to create and
launch arbitrary tokens, but no protocol enables content businesses to leverage those to-
kens by aligning incentives between users and applications. Due to suboptimal transaction
cost structures that incur fees for basic actions such as voting or posting, misalignment
of interests between meta and core tokens that aren’t built for influencing distributions
based on Proof-of-Brain, private key hierarchies that don’t cater to social versus financial
operations, and slow transaction speeds that are out of sync with real-time websites - none
of these protocols could ever provide an acceptable user experience for content websites,

SBJ’s Smart Media Tokens give anyone the power to launch and sell Proof-of-Brain [1]
tokens, which are tokens distributed by “upvote” and “like”-based algorithms

and can be integrated with websites to align incentives and spur growth, while websites are

empowered to adopt sustainable, currency-centric revenue models. This model has been

tested and continues to be proven by SBJit.com, busy.org, chainbb.com, dsound.audio,
dtube.video and other SBJinterfaces, which are monetizing content, tokens and media

in a way never before seen.

such as Twitter, Reddit (even subreddits) or The New York Times.

For content websites and tokens, incentive alignment between websites and users comes
from a steady, as well as decentralized and mathematically guaranteed, release of new
tokens, and incentives that must be allocated to the users - including bloggers, vloggers,
commenters and curators. The distribution of new tokens occurs based on stake-weighted
voting to prevent gaming and eliminate the need for a counterparty. Quality user experi-
ence comes from tokens that can be transacted safely (through separate private keys for
distinct sets of actions), without fees, and at real-time speeds. Further incentive align-
ment comes from a company’s ability to raise capital in ICOs. All Smart Media Tokens
have built-in ICO support, should the issuer wish to launch one.

Table of Contents
Document Metadata 1

1

https://github.com/steemit/smt-whitepaper/blob/master/smt-manual/manual.md
https://github.com/steemit/smt-whitepaper/blob/master/smt-manual/manual.md
https://steem.io/steem-bluepaper.pdf
https://steem.io/steem-bluepaper.pdf
https://steem.io/steem-bluepaper.pdf
https://steemit.com
https://busy.org
https://chainbb.com
https://dsound.audio
https://dtube.video

Smart Media Tokens 1
A Token Protocol for Content Websites, Applications, Online Communities and

Guilds Seeking Funding, Monetization and User Growth 1

Introduction
Leveraging Tokens for Autonomous User Growth
New Fundraising Opportunities .
Immediate Liquidity .
Shared Bootstrap Tools .
Monetizing with Shared Token Rewards .
Can My Entity Participate in SBJs? .
Use Cases .

1 - Content Publishers - Single Token Support
2 - Forums - Multiple Token Support .
3 - Comments Widget for Online Publishers
4 - Sub-Community Moderators and Managers

5
5
6
6
6
6
7
7
7
8
9

10
5 - Arbitrary Assets - Tokens Representing Real World Assets 11

Owner’s manual
Create a control account .

Control account security .
Token consensus .

Token Generation and Initialized Parameters
SBJobject creation .
SBJpre-setup .
SBJsetup .
Token units .
Unit ratios .
Cap and min .
Hidden caps .
Generation policy data structure .
Examples and rationale .
Launch .
Full JSON examples .
Inflation Parameters .

12
12
13
13
13
13
14
15
16
16
16
17
18
18
20
21
29
33
34
34
35
36
38
39
40
41
42

Named token parameters .
Parameter constraints .
SBJvesting semantics .
Content rewards .
Curve definitions .
Target votes per day .
SBJSetup GUI Sketch .
Votability and Rewardability .
Static Token Parameters .
Mandatory token parameters .
SBJinteraction with existing operations . 42

Automated Market Makers for SBJs
Setup .

43
43
43Basic Definitions .

Notes on Conventions . 43

2

Finite Trades .
Basic Definitions .
Computing the Restoring Trade .
Computing the Equilibrium Price .
Example .

Infinitesimal Trades .
Setting up the Problem .
Solving the DE’s .

Qualitative discussion .
FAQ .

44
44
44
44
45
46
46
46
47
47

Costs of SBJOperations And Bandwidth Rate Limiting 50
Fee-less Operations Necessary for Quality User Experience 51

Decentralized Exchange
Automatic Order Matching .
Diverse Asset Types .

51
51
51

Zero Trading and Transfer Fees . 52

Augmenting SBJs with Additional Native Contracts 52
52
53
53

Community Building with Paid Positions .
Democratic SBJs using Whitelist Oracles .
Secondary ICOs for Contiguous Fundraising .
Bandwidth Sharing with SBJs Based on Reserve Liquidity Pools 53

What Makes SBJs Better Suited to Application-Specific Blockchains, such
as SBJ, than Application-General Blockchains, such as Ethereum? 53
SBJs are Safer and More Cost Effective in Application-Specific Blockchain En-

vironments . 54
54SBJs on SBJhave Aligned Proof-of-Brain Incentives with the Core Token .

SBJs on SBJHave Transaction Pricing that Contributes to a Quality User
Experience . 55

SBJs Benefit from a Blockchain that has Scaling Processes Programmed to a
Specialized Set of Applications . 55

SBJs Benefit from a Blockchain with Content Management System (CMS)
Primitives . 56

Increasing Market Demand for SBJwith SBJs and Implicit Value
Drivers rather than Fees 56
SBJPurchased for Transaction Bandwidth Enables Maximally Profitable

Participation across SBJs . 56
56
57
57

SBJSupply is Locked into Liquidity Pools by Automated Market Makers .
SBJand SBJDemand Increases with Advent of New Powers of Influence .
SBJDemand Increases with Proliferation of SBJICOsSBJ:
The World’s Advertising Network . 57

SBJEcosystem Support for SBJs
Integrating SBJs into Websites and Apps .

58
58
58APIs and Documentation .

Shared Tools for Account Creation, Key Signing, and Wallet Functions . . 58

Conclusion 58

3

References 58

Appendix
Implementation Notes .

SBJnaming standards .
Asset directory standards .
UI guidelines for SBJnames .
Operational guidelines for asset directories

58
58
59
59
60
60
60Asset directory formats .

Unit Tests . 61

4

Introduction

Smart Media Tokens (SBJs) is a proposal to build a consensus-level token issuance pro-
tocol on the SBJblockchain. Inspired by the revolutionary properties of the SBJ token
, including automatic distributions to content creators, SBJs will be an upgrade

beyond previously created blockchain token issuance protocols due to carefully designed

token sale programmability, automated liquidity providers, decentralized token markets

and dynamic token distribution parameters, as well as a large ecosystem of tools (open

source wallets, shared key signing tools, etc.) for integrations at website and application

layers.

SBJs are an evolution of the successful relationship established between SBJand

the social websites sitting atop of it, such as SBJit.com, which has grown to be a top

2100 website in Alexa rankings in less than one year, solely from integrating the incentive

model of SBJ. With SBJs, any website or content library across the internet may have

one or more tokens integrated into its interface to facilitate fundraising and autonomous

growth.

These tokens are designed to allow website operators flexibility during the integration of

the token into their community by choosing from many parameters that may be structured

creatively at outset or refined over time. Any tokens launched as SBJs shall benefit from a

blockchain ecosystem built with an inbuilt decentralized exchange, as well as an ecosystem

of open-source applications and libraries to support successful deployment, fundraising,
and growth.

Leveraging Tokens for Autonomous User Growth

SBJs are a breakthrough for bridging the world’s content applications to tokens in a way

that aligns incentives between the users of a network and the entrepreneurs building the

applications. By leveraging the concepts of inflation (new token emissions) and token al-
locations by post-based voting, SBJs exist in a manner where value must be distributed

to users who are participating in their related content networks and applications. En-
trepreneurs may now create tokens to integrate with their blog, application, or an entire

network of applications and topics. With SBJs, the entrepreneurs have the flexibility

to decide on the economics of the tokens they integrate into their products, from the

inflation rates to the algorithms that distribute the tokens.

Two unique properties align incentives and make SBJs “smart and social” compared to

other tokens (such as bitcoin, ether and ERC-20s). The first is a pool of tokens dedicated

to incentivizing content creation and curation (called the “rewards pool”). The second

is a voting system that leverages the wisdom of the crowd to assess the value of content

and distribute tokens to it. These two unique properties when combined are referred

to as Proof-of-Brain, which is an entendre based on Proof-of-Work, meant to emphasize

the human work required to distribute tokens to community participants. Proof-of-Brain

positions SBJs as a tool for building perpetually growing communities, which encourage

their members to add value to the community through the built in rewards structure.

Entrepreneurs and established entities may rely on SBJs to grow their content network

because of the automated and continuous generation of new tokens that are allocated

to producers of content by the holders of the existing tokens, through the process of

competitive voting. As the tokens are distributed to users of the network, the interests of

5

https://steemit.com

existing token holders are further aligned with content creators, the businesses running
the applications, and the entrepreneurs that support them. These unique properties of
the tokens’ economics continue to provide incentives for new users to join and participate
in growing the network. Any application, whether it is an existing publisher behemoth or
a stealth-mode social media startup, will be able to integrate and leverage these special
tokens for their own growth.

New Fundraising Opportunities

Blockchain-based tokens, beginning strongly with the advent of ERC20 on Ethereum,
represent a new manner of bringing capital into an organization through the process of

Initial Coin Offerings (ICOs). ICOs are an opportunity for one group to sell an initial

supply of tokens, privately or publicly, for-specific-purpose, for-profit or not-for-profit.
Depending on how these tokens are sold, different regulatory bodies could see them as

commodities, securities, derivatives, or as none of the above. Regardless, it is clear we

have seen north of one billion dollars (USD) raised through ICOs in 2017, and to support

this trend, it is possible to conveniently launch and sell tokens via the built in ICO contract

of SBJs. The launch of SBJs can be structured for ICOs with hard, soft, and no caps,
and can be tailored to receive SBJand cryptocurrencies on other blockchains.

Immediate Liquidity

By leveraging a recently designed automated market maker concept [2], SBJ-based ICOs

allow a portion of SBJtokens received to be sent into an SBJ’s on-chain, off-order-
book market maker in order to provide liquidity to the SBJat a specified reserve ratio.
Beyond the social and specialized distribution mechanisms of SBJs, this feature advances

the concept of automated market makers by pairing it alongside SBJ’s decentralized

markets, which also facilitate bids and asks by human participants. The combination

of these two markets enables on-chain and trustless exchange opportunities for market

makers while enabling liquidity for token users.

Shared Bootstrap Tools

SBJs may be created with reward pool parameters tuned for “Shared Influence” between

SBJPower and other vesting SBJs, which means a SBJcreator may specify that

SBJPower can control a portion of the SBJ’s rewards pool for an unlimited or limited

amount of time, with increasing or decreasing influence. Altogether, Shared Influence may

allow SBJs to be wholly or partially bootstrapped by the interest of existing and active

SBJor other SBJcommunity members. Through these tools, community managers

and entrepreneurs launching a token may leverage existing user bases to accelerate the

distribution of the SBJto a target market.

Monetizing with Shared Token Rewards

All SBJbased interfaces have the option of splitting token rewards among a set of

arbitrary recipients, which could include an interface, community manager, referrer, a

paid position donation pool, and more. An interface can also provide this optionality

6

https://about.bancor.network/static/bancor_protocol_whitepaper_en.pdf
https://steem.io/steem-bluepaper.pdf

of how to split the tokens to the authors. The number of potential Reward Sharing
beneficiaries is initially soft capped by block producers at eight while the feature proves
its use, however the blockchain is capable of handling up to 256 beneficiaries per post.

Can My Entity Participate in SBJs?

An SBJcan be launched by a person or entity; they only need 1 USD to cover the network

fee (this fee prevents spam and unused tokens while accruing value to the network), and

a namespace on SBJ- which can be obtained by registering at anon.SBJ.network,
SBJit.com, SBJconnect.com, or any other SBJsign-up service.

Once an account name to register the token with is secured, the account issues the token

by using a SBJ-based command line tool or any tool created in the future to support

token launches. The token can be structured to support an initial sale or distribution of

the token. Certain properties of an SBJ, such as its inflation rate, must also be defined

by the person or entity creating the token. These properties dictate how the token is used

inside applications and respective communities.

From launch, the token becomes immutable on the blockchain, and leveraged correctly,
the token can have dramatic effects on the growth of businesses that choose to integrate
these tokens.

Use Cases

We have identified five ways in which existing businesses and future entrepreneurs can

leverage specially designed SBJs to transform the internet. Among these use cases you

may discover other ways of structuring and leveraging tokens inside applications. This list

is by no means exhaustive, and we will update this paper as more use cases demonstrate

their value.

1 - Content Publishers - Single Token Support

A mainstream media website’s growth has been slowing and they are looking for ways

to get ahead of the changing tech landscape. The website migrates to a Disqus-like

application based on SBJ, or taps directly into SBJAPIs for a custom integration.
Now their subscribers can be rewarded with cryptocurrency while commenting. When

the website is ready, they can issue their own token through the comments interface - the

token will allow them to 1) raise capital by selling tokens 2) catalyze autonomous growth.

7

https://anon.steem.network
https://steemit.com
https://v2.steemconnect.com

Figure 1: Single Token Content Publishers

2 - Forums - Multiple Token Support

An up-and-coming forum business is looking to integrate cryptocurrency to create cash

flow and spark growth to get the business to the next level, however they are not cryp-
tocurrency security experts and would prefer not to host a cryptocurrency wallet. They

issue an SBJand integrate it into their website. Focusing solely on the social aspects, the

forum business can integrate other applications, such as SBJConnect into their forum

to handle the wallet and transfer capabilities. This allows them to focus on their business

(growing communities) without focusing on the security aspects of cryptocurrency. The

forum enables additional tokens to be exposed or launched, to represent specific topics

of discussion. The ability to launch these tokens can be retained by the company behind

the website, or granted to the website’s community managers. Tokens dedicated to the

website’s specific topics will further spur autonomous growth of the website niche by niche.
An example of this multi-token model could eventually be found in organizations such as

ChainBB (chainbb.com) if it were to enable its own globally available token on its domain,

8

https://chainbb.com

as well as narrowly available tokens for specific community niches - such as “gardening.”

Figure 2: Multiple tokens Forum

3 - Comments Widget for Online Publishers

One of the ways in which publishers will be onboarded faster to SBJintegrations is by

offering a SBJ-based comments widget that can easily be integrated into existing blogs

that are built on software such as WordPress and Blogger. The developer employing

the widget would be able to take a percentage of the tokens (called “Shared Rewards”)
distributed to the commenters for themselves, thereby creating a business opportunity for

the next generation of Disqus-like companies that are cryptocurrency enabled. It would

alleviate the burdens of transaction signing support, private key management, wallet

functionality, and hosting costs for the publisher - by outsourcing all of these functions

to the comments widget maintainer.

9

Figure 3: Comment Widget

4 - Sub-Community Moderators and Managers

Imagine you are a moderator for a specific topic inside a forum, such as a Reddit “sub-
reddit” or a SBJit “community”. If a website integrates SBJs for these specific topics,
then the topic moderator/s can launch these tokens to empower the subscribers of their

topic, raise funds, and increase the quality of content curation for the community.

10

Figure 4: Sub-community

5 - Arbitrary Assets - Tokens Representing Real World Assets

Let’s examine an instance in which an entrepreneur is looking to provide liquidity in the

SBJecosystem. The entrepreneur can issue an SBJwithout inflation properties, and

imply that they will provide structure to peg it to USD (or any other debt, contract, or

asset), making it like an IOU or basic derivative. The structure they provide to the asset

includes buying and selling it near $1, similar to Tether. The entrepreneur sets up bank

wire capabilities for buying and selling, and takes a small % on each transaction. The

derivative trades against SBJ, and also brings capital into the ecosystem to be used

across all tokens.

11

Figure 5: IOU Asset Token Exchange

Owner’s manual

This manual will explain the nuts and bolts of how SBJs work. The intended audience

is technical users who want to create their own SBJ.

Create a control account

The first step to creating an SBJis to create a control account for the SBJ. Any SBJ

account may serve as a control account, however it is highly recommended to create a

dedicated account solely for the purpose. It is also highly recommended that a control

account does not post, vote, or hold any SBJ, SBD, or other tokens (other than a

small amount of SBJpower for transaction bandwidth).

12

The control account’s name will not occupy a high visibility position in most user inter-
faces, so it does not much matter if the control account’s name is not the best match for

the SBJbrand.

Control account security

Security on the control account is important for persons who plan to use the account post
launch:

• The control account should use 2-of-3 or 3-of-5 multi-signature security.
• The control account’s authorities should have other accounts, not specific keys, as

multi-signature members.
• For additional security, each of the accounts in the control account’s multi-signature

group should itself use multi-signature security.
• A subset of keys should be kept offline, in air-gapped machines.
• Transactions should be generated by an online interface, and physically transferred

to the air-gapped machines via removable media.
• Signatures should be returned via physically removable media to the online system

for transmission via the UI.

Of course, once authorities are set up, you should verify the account is still able to transact.
It is advisable to test your authorities and transaction signing setup using a testnet, or a
less-important account on the main network.

Once the token is launched, you may consider burning the account’s keys by assigning
them to @null, initiating a token for which the dynamic properties can never be adjusted.

Token consensus

Since tokens participate in atomic transactions also involving SBJ, they have been

designed as part of the SBJblockchain’s consensus.

Token Generation and Initialized Parameters

SBJobject creation

The first operation to be executed is an SBJ_create_operation. This operation creates
 an SBJobject in the blockchain state. After executing the SBJ_create_operation, the

newly created SBJobject is not yet fully configured.
Most of the configuration occurs in subsequent operations (SBJ_set_setup_parameters_operation
,SBJ_setup_inflation_operation and SBJ_setup_operation). These later operations
may occur in the same transaction, but they may also occur at any later point in time.
struct SBJ_create_operation
 {

account_name_type control_account;
asset SBJ_creation_fee;
asset_symbol_type symbol;
extensions_type extensions;

};

13

Numerical asset identifiers

An SBJis referred to by a numerical asset identifier or NAI, consisting of two at-signs

followed by nine decimal digits, for example @@314159265. The blockchain enforces that

the identifier placed by a UI into the SBJ_create_operation must match a result from

the get_nai_pool RPC. Therefore, an NAI cannot be chosen freely by the SBJcreator.
It is not even possible to “mine” a “vanity NAI” (analogous to the “vanity Bitcoin address”
some people use).
The reason for this restriction is that the blockchain designers want to discourage users

from using the consensus level identifiers as symbol names, and instead use a non-
consensus directory system to attach human meaningful symbols to assets. Distinguishing

a “namesquatter” from the legitimate owner of a brand is not something that a blockchain

can do, especially if the squatter is willing to pay the SBJcreation fee.

SBJnaming

The solution to the namesquatting problem is to publish an asset directory mapping NAIs
to names. An asset directory is non-consensus, meaning that all blockchain operations
are serialized only with NAIs. Asset names are only used for UI presentation.

A UI may include an asset directory as a file, URL, or a blockchain account which publishes
directory entries with custom operations. The publisher of an asset directory should
ensure that directory entries meet whatever standards of legitimate brand ownership the
publisher chooses to enforce.

SBJcreation fee

Issuing a SBJ_create_operation requires payment of SBJ_creation_fee.
The amount required is set by the SBJ_creation_fee field of dynamic_global_
properties_object.This field may contain a value in SBJor SBD. If SBJ_creation_
fee is specified in SBD,
an equivalent amount of SBJwill be accepted at the current price feed;likewise,
if SBJ_creation_fee is specified in SBJ, an equivalent amount of SBD will

to update it. Updates to the SBJ_creation_fee amount may occur in future hard

-forks, however, so user-agents should read the SBJ_creation_
fee value from thedynamic_global_properties_object. User-
agents should not assume the fee will

be accepted at the current price feed.

Initially, SBJ_creation_fee
will be set to 1 SBD, and no means will be provided

always be 1 SBD and they should be prepared to charge a separate fee paid to the
user-agent if the aim of the interface is to enable only a curated set of tokens.
The fee is destroyed by sending it to SBJ_NULL_ACCOUNT.
SBJpre-setup
Two pre-setup operations are included: SBJ_setup_inflation_operation and
SBJ_setup_parameters. These operations must be issued after SBJ_create_operation
,and before SBJ_setup_operation. They may be issued in the same transaction,
or in prior blocks.
The reason pre-setup operations are not made a part of SBJ_setup_operation is to allow
 a large number of pre-setup operations to be executed over multiple blocks.

14

SBJsetup

Each SBJhas an associated descriptor object which has permanent configuration

data. This data cannot be changed after launch! The descriptor is set by the

SBJ_setup_operation:

struct SBJ_setup_operation
 {

account_name_type
asset_symbol_type
int64_t

control_account;
SBJ_name;
max_supply = SBJ_MAX_SHARE_SUPPLY;

SBJ_generation_policy initial_generation_policy;

time_point_sec
time_point_sec
time_point_sec
time_point_sec

generation_begin_time;
generation_end_time;
announced_launch_time;
launch_expiration_time;

extensions_type extensions;
};

The symbol precision in SBJ_setup_operation is authoritative. It may differ from, and
 will override, any previously specified operations’ precision. Subsequently issued opera
-tions must have matching precision.
The operation must be signed by the control_account key. The named SBJmust have

been created earlier by the control_account. The symbol’s embedded decimal places

may be distinct from prior SBJ_setup_operation.
The decimal_places field is used by UIs to display units as a number of decimals.

The generation_begin_time is when participants can begin to contribute to the ICO.
It is allowed to be in the future so users have time to study the ICO’s final terms before
the ICO begins.

The generation_end_time is when the ICO stops accepting contributions, and
the announced_launch_time is when the ICO token is created (assuming the ICO
reached the minimum participation level). Some pause is allocated between the
generation_end_time and announced_launch_time to allow for the possibility of
ICOs that wish to have hidden caps that aren’t revealed while the ICO is open for
contributions. It also gives the ICO creator time to use the final ICO numbers to aid in
pre-launch business activities.

At launch_expiration_time, if the ICO has not yet launched, all contributors will be

automatically refunded (with virtual operations) and the ICO will be cancelled. The

symbol will remain reserved to the specified control_account. However, in order to

launch the token, an SBJ_create_operation must be issued and the SBJ_creation_
fee must be paid again.

15

Token units

Initial token generation is driven by a contributions of SBJunits from contributors.
To simplify rounding concerns, a contribution must be an integer number of SBJ

units. The ICO creator sets the size of a SBJunit - it can be large or small. It is

better to keep the unit small (for example, 1 SBJor 0.1 SBJ), as this allows the

ICO to be accessible to the maximum possible audience.
A SBJunit also specifies a routing policy which determines where the SBJgoes

when the token launches. (SBJfor tokens which do not launch may be refunded on

demand.) The routing policy may split the SBJin the unit among multiple parties.

When the ICO occurs, the tokens are generated in token units. Multiple token units are

generated per SBJunit contributed. Token units also have a routing policy.

The units and their routing policies are specified in the SBJ_generation_unit structure:

struct SBJ_generation_unit
 {

flat_map< account_name_type, uint16_t >
flat_map< account_name_type, uint16_t >

SBJ_unit;
token_unit;

};

Each (key, value) pair in the flat_map determines the routing of some satoshis. The

total SBJ/tokens in each unit is simply the sum of the values.

Unit ratios

When an SBJlaunches, token units are created for SBJunits in a R-for-1 ra-tio.
The number R is called the unit ratio. Maximum and minimum allowable values

for R are specified respectively in the min_unit_ratio and max_unit_ratio fields of

SBJ_generation_policy.
The maximum number of token units that can be created in the ICO is limited to
max_token_units_generated, a parameter which is set by the ICO creator. (More to-
kens can be created after the token has launched, but this later creation is called inflation
and is not considered to be part of the ICO.)

The unit ratio is set to the largest integer that would not result in exceeding

max_token_units_generated for the number of SBJunits actually contributed.

Cap and min

ICOs may specify a minimum number of SBJunits min_SBJ_units. If the ICO

does not reach min_SBJ_units before generation_end_time, then it does not occur,
and contributors become eligible for refunds.
Likewise, ICOs may specify two maximum numbers of SBJunits: A hard cap and

a soft cap. Units in excess of the soft cap have different routing for their SBJand

tokens. SBJunits in excess of the hard cap are rejected and do not generate any SBJs
.

16

The effects of the soft cap are divided proportionally among all contributors. I.e. if a

ICO has a soft cap of 8 million SBJ, and 10 contributors each contribute 1 million SBJ
, then 0.2 million of each user’s SBJis routed via the soft cap’s policy.

The effects of the hard cap fall solely on the last contributors. I.e. if a ICO has a hard

cap of 8 million SBJ, and 10 contributors each contribute 1 million SBJ, then

the first 8 users fully participate in the ICO, and the last 2 users are refunded 1 million

SBJ.

Hidden caps

The min and hard caps are hidden in the generation policy. This means that these
numbers are fixed at setup time, but the ICO creator has the option to keep them secret.
This functionality is implemented by a commit/reveal cryptographic protocol: A hash
called the commitment is published at setup time, and the actual amount must match
the commitment. (A nonce is also included in the hash to prevent an attacker from finding
the hidden cap with a brute-force guess-and-test approach.)

The SBJdesigner may wish to pre-publish a guarantee that the hidden values are within

a certain range. The lower_bound and upper_bound fields provide this functionality: A

revealed amount that is not in the specified range is treated the same as a hash mismatch.

struct SBJ_cap_commitment
 {

share_type
share_type
digest_type

lower_bound;
upper_bound;
hash;

};

struct SBJ_revealed_cap
 {

share_type
uint128_t

amount;
nonce;

};

struct SBJ_cap_reveal_operation
 {

account_name_type control_account;
SBJ_revealed_cap cap;

extensions_type extensions;
};

All caps are hidden, but the cap may be revealed at any point in time. Therefore, an

ICO with a non-hidden minimum or cap may be implemented by simply including the

SBJ_cap_reveal_operation in the same transaction as the SBJ_setup_operation.
UIs should provide functionality for this.
A UI should provide one or more of the following means to ensure the nonce and amount
are recoverable:

• Force the user to type in the amount and nonce again, as confirmation they have
been backed up.

17

• Set nonce to some deterministic function of the private key and public data, for ex-
ample nonce = H(privkey + control_account + lower_bound + upper_bound
+ current_date).

• Provide functionality to brute-force the uncertain fields when the nonce is known
(e.g. the current date and amount).

• Require the amount to be low-entropy to facilitate brute-forcing when the nonce is
known (e.g. a number between 1-999 times a power of 10).

Generation policy data structure

The SBJgeneration policy data structure looks like this:

struct SBJ_capped_generation_policy
{

SBJ_generation_unit pre_soft_cap_unit;
SBJ_generation_unit post_soft_cap_unit
;
SBJ_cap_commitment min_SBJ_units_commitment;
SBJ_cap_commitment hard_cap_SBJ_units_commitment;

uint16_t soft_cap_percent = 0;

uint32_t
uint32_t

min_unit_ratio = 0;
max_unit_ratio = 0;

extensions_type extensions;
};

Note, the max_token_units_generated parameter does not appear anywhere in the oper-
ation. The reason is that it is actually a derived parameter: max_token_units_generated
= min_unit_ratio * hard_cap_SBJ_units.

Additionally, the SBJ_generation_policy is defined as a static_variant, of which
SBJ_capped_generation_policy is the only member:

typedef static_variant< SBJ_capped_generation_policy > SBJ_generation_policy

;This typedef allows the potential for future protocol versions to allow additional gener-
ation policy semantics with different parameters.

Examples and rationale

Example ICO

ALPHA wants to sell a token to the crowd to raise funds where: 70% of contributed

SBJgoes to the Alpha Organization Account (@alpha_org), 23% of contributed

SBJgoes to Founder Account A (@founder_a), and 7% of contributed SBJgoes

to Founder Account B (@founder_b).

ALPHA defines a SBJunit as:

SBJ_unit = [["alpha_org", 70], ["founder_a", 23], ["founder_b", 7]]

18

This SBJ-unit contains 100 SBJ-satoshis, or 0.1 SBJ.

For every 1 SBJcontributed, an ALPHA contributer will receive 5 ALPHA tokens,
and Founder Account D will receive 1 ALPHA token. This five-sixths / one-sixth split is

expressed as:

token_unit = [["$from", 5], ["founder_c", 1]]

This ratio is defined in the following data structure:

struct SBJ_generation_unit
{

flat_map< account_name_type, uint16_t >
flat_map< account_name_type, uint16_t >

SBJ_unit;
token_unit;

};

This token-unit contains 6 ALPHA-satoshis, or 0.0006 ALPHA (if ALPHA has 4 decimal

places).

Next we define the unit ratio as the relative rate at which token_unit are issued as

SBJ_unit are contributed. So to match the specification of 6 ALPHA per 1 SBJ,
we need to issue 1000 ALPHA-units per SBJ-unit. Therefore the unit ratio of this

ICO is 1000. This unit ratio is placed in the min_unit_ratio and max_unit_ratio fields

of the SBJ_capped_generation_policy data structure:

min_unit_ratio = 1000
max_unit_ratio = 1000

A special account name, $from, represents the contributor. Also supported is

$from.vesting, which represents the vesting balance of the $from account.

Why unit ratios?

Why does the blockchain use unit ratios, rather than simply specifying prices?

The answer is that it is possible to write ICO definitions for which price is ill-defined. For
example:

• "$from" does not occur in token_unit.
• "$from" occurs in both token_unit and SBJ_unit.
• A combination of "$from" and "$from.vesting" occurs.
• Future expansion allows new special accounts.

All of these ICO definitions have a unit ratio, but defining a single quantity to call “price”
is complicated or impossible for ICOs like these.

UI treatment of unit ratios

As a consequence of the above, the concept of “ICO price” is purely a UI-level concept.
UIs which provide an ICO price should do the following:

• Document the precise definition of “price” provided by the UI.
• Be well-behaved for pathological input like above.
• Have a button for switching between a unit ratio display and price display.

19

Hidden cap FAQ

• Q: Should my ICO have a cap?

• A: Some set of people stay away from uncapped ICOs due to perceived “greed”, or
want a guaranteed lower bound on the percentage of the ICO their contribution will
buy. If you want this set of people to participate, use a cap.

• Q: Should my cap be hidden?

• A: Some people like the transparency and certainty of a public cap. Other people
think a hidden cap creates excitement and builds demand. One possible compromise
is to publish the previous and next power of 10, for example “this ICO’s cap is
between 1 million and 10 million SBJ.”

• Q: How do I disable the cap?

• A: Set it so that the cap would occur above SBJ_MAX_SHARE_SUPPLY.

Launch

The effective launch time is the time at which tokens become transferable. Two possibili-
ties occur based on the timing of revealing of the hard cap:

• When min_SBJ_units and hard_cap_SBJ_units are revealed before the
announced_launch_time, the launch is an on-time launch. The launch logic is
executed by the blockchain as soon as announced_launch_time arrives, regardless
of further user action.

• When min_SBJ_units and hard_cap_SBJ_units have not been revealed before
the announced_launch_time, the launch will be a delayed launch. The launch logic
is executed by the blockchain when min_SBJ_units and hard_cap_SBJ_units
have been revealed.

• If the launch is delayed, then any contributor may use SBJ_refund_
operation to

get their SBJback at any time after announced_launch_time, and before the
launch logic is executed.The reasons for this design are as follows:

• The hidden cap isn’t published immediately (that’s the definition of hidden).
• Publishing the hidden cap is an action that must be done by the ICO creator (again,

any action requiring non-public information to occur cannot happen automatically
on a blockchain).

• If the ICO creator never acts, then the launch logic will never execute.
• In the case of such a malicious or unresponsive ICO creator, contributors’ SBJ

would effectively be trapped forever, and they would never receive any tokens.
• To keep the SBJfrom being trapped in this way, the SBJ_refund_operation

is implemented.

struct SBJ_refund_operation
 {

account_name_type
asset
extensions_type

contributor;
amount;
extensions;

};

20

Note, users are not required to use SBJ_refund_operation; each individual contributor
 must opt-in to receiving a refund. If the ICO creator publicizes a legitimate reason they
 failed to publish before announced_launch_time, it is possible that all/most contributors
 will voluntarily choose not to use SBJ_refund_operation. In this case,
the launch will occur as soon as the ICO creator publishes the hidden values.
The launch logic considers a contribution followed by a refund to be equivalent to not
having contributed at all. Therefore, when a delayed launch occurs, each contributor will
be in exactly one of the following two states:

• The contributor has executed SBJ_refund_operation, received their SBJback,
and will not participate in the ICO.

• The contributor has not been issued a refund, and will participate in the ICO.

It is possible for a delayed launch to have exceeded its min_SBJ_units value at the

announced launch time, but subsequently falls below its min_SBJ_units value as a

result of refunds. In such a case, the ICO will not occur; it will be treated as if it had

never reached its min_SBJ_units.

Full JSON examples

ALPHA

This example builds on the ALPHA example from earlier. This ICO has the following
characteristics:

• 70% of contributed SBJgoes to Alpha Organization Account (@alpha_org).
• 23% of contributed SBJgoes to Founder Account A (@founder_a).
• 7% of contributed SBJgoes to Founder Account B (@founder_b).
• Minimum unit of contribution is 0.1 SBJ.
• For every 1 SBJcontributed, the contributor gets 5 ALPHA (@contibutor_a).
• For every 1 SBJcontributed, Founder Account C gets 1 ALPHA (@founder_c).
• No minimum, hard cap, or soft cap.
• No post-launch inflation after launch.

21

Figure 6: Alpha ICO Flow

These are the operations for the ALPHA launch:

[
["SBJ_setup",
{
"control_account" : "alpha",
"decimal_places" : 4,
"max_supply" : "1000000000000000",
"initial_generation_policy" : [0,
{
"pre_soft_cap_unit" : {

"SBJ_unit" : [["alpha_org", 70], ["founder_a", 23], ["founder_b", 7]],
"token_unit" : [["$from", 5], ["founder_c", 1]]

},
"post_soft_cap_unit" : {
"SBJ_unit" : [],"
token_unit" : []

},
"min_SBJ_units_commitment" : {
"lower_bound" : 1,
"upper_bound" : 1,

"hash" : "32edb6022c0921d99aa347e9cda5dc2db413f5574eebaaa8592234308ffebd2b"
},

22

"hard_cap_SBJ_units_commitment" : {
"lower_bound" : "166666666666",
"upper_bound" : "166666666666",

"hash" : "93c5a6b892de788c5b54b63b91c4b692e36099b05d3af0d16d01c854723dda21"
},
"soft_cap_percent" : 10000,
"min_unit_ratio" : 1000,
"max_unit_ratio" : 1000,
"extensions" : []

}
],
"generation_begin_time" : "2017-08-10T00:00:00",
"generation_end_time" : "2017-08-17T00:00:00",
"announced_launch_time" : "2017-08-21T00:00:00",
"SBJ_creation_fee" : "1.000 SBD",
"extensions" : []

}
],
["SBJ_cap_reveal"
,{

"control_account" : "alpha",
"cap" : { "amount" : 1, "nonce" : "0" },
"extensions" : []

}
],
["SBJ_cap_reveal"
,{

"control_account" : "alpha",
"cap" : { "amount" : "166666666666", "nonce" : "0" },
"extensions" : []

}
]

]

Some things to note:

• We disable the soft cap by setting soft_cap_percent to SBJ_100_PERCENT =
10000.

• post_soft_cap_unit must be empty when the soft cap is disabled.
• The unit ratio does not change so min_unit_ratio / max_unit_ratio must be set

accordingly.
• We disable the hidden caps by using a zero nonce and setting lower_bound ==

upper_bound.
• We still need to reveal the caps with SBJ_cap_reveal_operation.
• The hard cap specified is the largest hard cap that does not result in created tokens

exceeding SBJ_MAX_SHARE_SUPPLY.

BETA

The BETA token is created with the following rules:

• For every 5 SBJcontributed, 3 SBJgo to founder account Fred.

23

• For every 5 SBJcontributed, 2 SBJgo to founder account George.
• 10% of the initial token supply goes to founder account George.
• 20% of the initial token supply goes to founder acconut Henry.
• 70% of the initial token supply is divided among contributors according to their

contribution.
• Each SBJunit is 0.005 SBJ.
• Each token unit is 0.0010 BETA.
• The minimum raised is 5 million SBJunits, or 25,000 SBJ.
• The maximum raised is 30 million SBJunits, or 150,000 SBJ.
• Each contributor receives 7-14 BETA per SBJcontributed, depending on total

contributions.
• George receives 1-2 BETA per SBJcontributed, depending on total contribu-

tions.
• Harry receives 2-4 BETA per SBJcontributed, depending on total contributions.
• If the maximum of 30 million SBJunits are raised, then min_unit_ratio =

50 applies.
• The maximum number of token units is min_unit_ratio times 30 million, or 1.5

billion token units.
• Since each token unit is 0.0010 BETA, at most 1.5 million BETA tokens will be

generated.
• If 75,000 SBJor less is contributed, the contributors George and Harry will

receive the maximum of 14, 2, and 4 BETA per SBJcontributed (respectively).
• If more than 75,000 SBJis contributed, the contributors, George and Harry

will receive BETA in a 70% / 10% / 20% ratio, such that the total is fixed at 1.5
million BETA.

• As a consequence of the hard cap, the contributors, George and Harry will receive
at least 7, 1, and 2 BETA per SBJcontributed (respectively).

This example is chosen to demonstrate how the ratios work. It is not a realistic example,
as most ICOs will choose to either set min_unit_ratio = max_unit_ratio like ALPHA,
or choose to use a large max_unit_ratio like BETA.

[
[
"SBJ_setup"
,{
"control_account" : "beta",
"decimal_places" : 4,
"max_supply" : "1000000000000000",
"initial_generation_policy" : [0,
{
"pre_soft_cap_unit" : {
"SBJ_unit" : [["fred", 3], ["george", 2]],
"token_unit" : [["$from", 7], ["george", 1], ["henry", 2]]

},
"post_soft_cap_unit" : {
"SBJ_unit" : [],"
token_unit" : []

},
"min_SBJ_units_commitment" : {
"lower_bound" : 5000000,
"upper_bound" : 5000000,

24

"hash" : "dff2e4aed5cd054439e045e1216722aa8c4758b22df0a4b0251d6f16d58e0f3b"
},
"hard_cap_SBJ_units_commitment" : {
"lower_bound" : 30000000,
"upper_bound" : 30000000,

"hash" : "f8e6ab0e8f2c06a9d94881fdf370f0849b4c7864f62242040c88ac82ce5e40d6"
},
"soft_cap_percent" : 10000,
"min_unit_ratio" : 50,
"max_unit_ratio" : 100,
"extensions" : []

}
],
"generation_begin_time" : "2017-06-01T00:00:00",
"generation_end_time" : "2017-06-30T00:00:00",
"announced_launch_time" : "2017-07-01T00:00:00",
"SBJ_creation_fee" : "1000.000 SBD",
"extensions" : []

}
],
[
"SBJ_cap_reveal"
,{
"control_account" : "beta",
"cap" : { "amount" : 5000000, "nonce" : "0" },
"extensions" : []

}
],
[
"SBJ_cap_reveal"
,{

"control_account" : "beta",
"cap" : { "amount" : 30000000, "nonce" : "0" },
"extensions" : []

}
]

]

This spreadsheet will make the relationship clear.

GAMMA

The GAMMA token is like BETA, but with one difference: The large max_unit_ratio
means that the maximum issue of 1.5 million tokens is reached very early in the ICO.
This ICO effectively divides 1.5 million GAMMA tokens between contributors (provided
at least 5 SBJis contributed).

[
[
"SBJ_setup"
,{

25

ico-parameters.ods

"control_account" : "gamma",
"decimal_places" : 4,
"max_supply" : "1000000000000000",
"initial_generation_policy" : [0,
{
"pre_soft_cap_unit" : {
"SBJ_unit" : [["fred", 3], ["george", 2]],
"token_unit" : [["$from", 7], ["george", 1], ["henry", 2]]

},
"post_soft_cap_unit" : {
"SBJ_unit" : [],"
token_unit" : []

},
"min_SBJ_units_commitment" : {
"lower_bound" : 5000000,
"upper_bound" : 5000000,

"hash" : "dff2e4aed5cd054439e045e1216722aa8c4758b22df0a4b0251d6f16d58e0f3b"
},
"hard_cap_SBJ_units_commitment" : {
"lower_bound" : 30000000,
"upper_bound" : 30000000,

"hash" : "f8e6ab0e8f2c06a9d94881fdf370f0849b4c7864f62242040c88ac82ce5e40d6"
},
"soft_cap_percent" : 10000,
"min_unit_ratio" : 50,
"max_unit_ratio" : 300000,
"extensions" : []

}
],
"generation_begin_time" : "2017-06-01T00:00:00",
"generation_end_time" : "2017-06-30T00:00:00",
"announced_launch_time" : "2017-07-01T00:00:00",
"SBJ_creation_fee" : "1000.000 SBD",
"extensions" : []

}
],
[
"SBJ_cap_reveal"
,{
"control_account" : "gamma",
"cap" : { "amount" : 5000000, "nonce" : "0" },
"extensions" : []

}
],
[
"SBJ_cap_reveal"
,{
"control_account" : "gamma",
"cap" : { "amount" : 30000000, "nonce" : "0" },
"extensions" : []

}

26

]
]

DELTA

In this ICO we have one million DELTA tokens created for the founder, and none for
contributors. A modest contribution of 0.1 SBJcan be made by any user (including
the founder themselves) to trigger the generation.

[
[
"SBJ_setup"
,{
"control_account" : "delta",
"decimal_places" : 5,
"max_supply" : "1000000000000000",
"initial_generation_policy" : [0,
{
"pre_soft_cap_unit" : {
"SBJ_unit" : [["founder", 1]],
"token_unit" : [["founder", 10000]]

},
"post_soft_cap_unit" : {
"SBJ_unit" : [],"
token_unit" : []

},
"min_SBJ_units_commitment" : {
"lower_bound" : 10000000,
"upper_bound" : 10000000,

"hash" : "4e12522945b8cc2d87d54debd9563a1bb6461f1b1fa1c31876afe3514e9a1511"
},
"hard_cap_SBJ_units_commitment" : {
"lower_bound" : 10000000,
"upper_bound" : 10000000,

"hash" : "4e12522945b8cc2d87d54debd9563a1bb6461f1b1fa1c31876afe3514e9a1511"
},
"soft_cap_percent" : 10000,
"min_unit_ratio" : 1000,
"max_unit_ratio" : 1000,
"extensions" : []

}
],
"generation_begin_time" : "2017-06-01T00:00:00",
"generation_end_time" : "2017-06-30T00:00:00",
"announced_launch_time" : "2017-07-01T00:00:00",
"SBJ_creation_fee" : "1000.000 SBD",
"extensions" : []

}
],
[
"SBJ_cap_reveal",

27

{
"control_account" : "delta",
"cap" : { "amount" : 10000000, "nonce" : "0" },
"extensions" : []

}
],
[
"SBJ_cap_reveal"
,{
"control_account" : "delta",
"cap" : { "amount" : 10000000, "nonce" : "0" },
"extensions" : []

}
]

]

Vesting contributions

It is possible to send part or all of contributions to a vesting balance, instead of permitting
immediate liquidity. This example puts 95% in vesting.

"token_unit" : [["$from.vesting", 95], ["$from", 5]]

Burning contributed SBJ

In this ICO, the SBJis permanently destroyed rather than going into the wallet of
any person. This mimics the structure of the Counterparty ICO.

{
"SBJ_unit" : [["null", 1]],"
token_unit" : [["$from", 1]]

}

Vesting as cost

In this ICO, you don’t send SBJto the issuer in exchange for tokens. Instead, you
vest SBJ(to yourself), and tokens are issued to you equal to the SBJyou vested.

{
"SBJ_unit" : [["$from.vesting", 1]],"
token_unit" : [["$from", 1]]

}

Non-SBJ& Hybrid ICO’s

ICOs using non-SBJcontributions – for example, SBD, BTC, ETH, etc. – cannot
be done fully automatically on-chain. However, such ICOs can be managed by manually
transferring some founder account’s distribution to buyers’ SBJaccounts in proportion
to their non-SBJcontribution.

28

Inflation Parameters

Creation of SBJafter launch is called inflation.

Inflation is the means by which the SBJrewards contributors for the value they provide.

Inflation events use the following data structure:

struct SBJ_inflation_unit
{

flat_map< account_name_type, uint16_t > token_unit;
};

// Event: Support issuing tokens to target at time
struct token_inflation_event
{

timestamp schedule_time;

SBJ_inflation_unit unit;
uint32_t num_units;

};

This event prints num_units units of the SBJtoken.

Possible inflation target

The target is the entity to which the inflation is directed. The target may be a normal
SBJaccount controlled by an individual founder, or a multi-signature secured account
comprised of several founders.

In addition, several special targets are possible representing trustless functions provided
by the blockchain itself:

• Rewards. A special destination representing the token’s posting / voting rewards.
• Vesting. A special destination representing the tokens backing vested tokens.

Event sequences

Traditionally blockchains compute inflation on a per-block basis, as block production

rewards are the main (often, only) means of inflation.

However, there is no good reason to couple inflation to block production for SBJs. In fact,
SBJs have no block rewards, since they have no blocks (the underlying functionality of

block production being supplied by the SBJwitnesses, who are rewarded with SBJ).

Repeating inflation at regular intervals can be enabled by adding interval_seconds and

interval_count to the token_inflation_event data structure. The result is a new

data structure called token_inflation_event_seq_v1:

// Event seq v1: Support repeatedly issuing tokens to target at time
struct token_inflation_event_seq_v1
{

timestamp schedule_time;
SBJ_inflation_unit unit;
asset new_SBJ;

29

int32_t
uint32_t

interval_seconds;
interval_count;

};

The data structure represents a token inflation event that repeats every interval_seconds
seconds, for interval_count times. The maximum integer value 0xFFFFFFFF is a special
sentinel value that represents an event sequence that repeats forever.

Note, the new_SBJis a quantity of SBJ, not a number of units. The number of units is

determined by dividing new_SBJby the sum of unit members.

Adding relative inflation

Often, inflation schedules are expressed using percentage of supply, rather than in absolute
terms:

// Event seq v2: v1 + allow relative amount of tokens
struct token_inflation_event_seq_v2
{

timestamp schedule_time;
SBJ_inflation_unit unit;
uint32_t num_units;

int32_t
uint32_t

interval_seconds;
interval_count;

asset
uint32_t

abs_amount;
rel_amount_numerator;

};

Then we compute new_SBJas follows from the supply:

rel_amount = (SBJ_supply * rel_amount_numerator) / SBJ_REL_AMOUNT_DENOMINATOR
;new_SBJ= max(abs_amount, rel_amount);
If we set SBJ_REL_AMOUNT_DENOMINATOR to a power of two, the division can be optimized
 to a bit-shift operation. To gain a more dynamic range from the bits, we can let the shift
 be variable:
// Event seq v3: v2 + specify shift in struct
struct token_inflation_event_seq_v3
{

timestamp schedule_time;
SBJ_inflation_unit unit;

int32_t
uint32_t

interval_seconds;
interval_count;

asset
uint32_t
uint8_t

abs_amount;
rel_amount_numerator;
rel_amount_denom_bits;

};

Then the computation becomes:

30

rel_amount = (SBJ_supply * rel_amount_numerator) >> rel_amount_denom_bits
;new_SBJ= max(abs_amount, rel_amount);
Of course, the implementation of these computations must carefully handle potential

overflow in the intermediate value SBJ_supply * rel_amount_numerator!

Adding time modulation

Time modulation allows implementing an inflation rate which changes continuously over
time according to a piecewise linear function. This can be achieved by simply specify-
ing the left/right endpoints of a time interval, and specifying absolute amounts at both
endpoints:

// Event seq v4: v3 + modulation over time
struct token_inflation_event_seq_v4
{

timestamp schedule_time;
SBJ_inflation_unit unit;

int32_t
uint32_t

interval_seconds;
interval_count;

timestamp
timestamp

lep_time;
rep_time;

asset
asset
uint32_t
uint32_t

lep_abs_amount;
rep_abs_amount;
lep_rel_amount_numerator;
rep_rel_amount_numerator;

uint8_t rel_amount_denom_bits;
};

Some notes about this:

• Only the numerator of relative amounts is interpolated, the denominator is the same
for both endpoints.

• For times before the left endpoint time, the amount at the left endpoint time is
used.

• For times after the right endpoint time, the amount at the right endpoint time is
used.

Code looks something like this:

if(now <= lep_time)
{

abs_amount = lep_abs_amount;
rel_amount_numerator = lep_rel_amount_numerator;

}
else if(now >= rep_time)
{

abs_amount = rep_abs_amount;
rel_amount_numerator = rep_rel_amount_numerator;

31

}
else
{

// t is a number between 0.0 and 1.0
// this calculation will need to be implemented
// slightly re-arranged so it uses all integer math

t = (now - lep_time) / (rep_time - lep_time)
abs_amount = lep_abs_amount * (1-t) + rep_abs_amount * t;

rel_amount_numerator = lep_rel_amount_numerator * (1-t) + rep_rel_amount_numerator * t;
}

Inflation operations

The inflation operation is specified as follows:

struct SBJ_setup_inflation_operation
{

account_name_type control_account;

timestamp schedule_time;
SBJ_inflation_unit inflation_unit;

int32_t
uint32_t

interval_seconds = 0;
interval_count = 0;

timestamp
timestamp

lep_time;
rep_time;

asset
asset
uint32_t
uint32_t

lep_abs_amount;
rep_abs_amount;
lep_rel_amount_numerator = 0;
rep_rel_amount_numerator = 0;

uint8_t rel_amount_denom_bits = 0;

extensions_type extensions
};

The setup_inflation_operation is a pre-setup operation which must be executed before

the SBJ_setup_operation. See the section on pre-setup operations.

Inflation FAQ

• Q: Can the SBJinflation data structures express SBJ’s current inflation scheme?
• A: Yes (except for rounding errors).
• Q: Can the SBJinflation data structures reward founders directly after X

months/years?
• A: Yes.
• Q: I don’t care about time modulation. Can I disable it?

32

https://github.com/steemit/steem/issues/551

• A: Yes, just set the lep_abs_amount == rep_abs_amount and lep_rel_amount_numerator
== rep_rel_amount_numerator to the same value, and set lep_time = rep_time
(any value will do).

• Q: Can some of this complexity be hidden by a well-designed UI?
• A: Yes.
• Q: Can we model the inflation as a function of time with complete accuracy?
• A: The inflation data structures can be fully modeled / simulated. For some issue

structures, the amount issued depends on how much is raised, so the issue structures
cannot be modeled with complete accuracy.

Named token parameters

Some behaviors of SBJare influenced by compile-time configuration constants which
are implemented by #define statements in the SBJd C++ source code. It makes sense

for the equivalent behaviors for SBJs to be configurable by the SBJcreator.
These parameters are runtime_parameters and setup_parameters. The setup_parameters

are a field in SBJ_setup_operation; they must be set before SBJ_setup_operation, and
cannot be changed once SBJ_setup_operation is executed. The runtime_parameters
are a field in SBJ_set_runtime_parameters_operation, and they can be changed by
the token creator at any time.
These operations are defined as follows:

struct SBJ_set_setup_parameters_operation
 {

account_name_type control_account;

flat_set< SBJ_setup_parameter
>extensions_type

setup_parameters;
extensions;

};

struct SBJ_set_runtime_parameters_operation
 {

account_name_type control_account;

flat_set< SBJ_runtime_parameter
>extensions_type

runtime_parameters;
extensions;

};

Currently the following setup_parameters and runtime_parameters are defined:

struct SBJ_param_allow_vesting
 struct SBJ_param_allow_voting

{ bool value = true; };
{ bool value = true; };

typedef static_variant<
SBJ_param_allow_vesting
,SBJ_param_allow_voting
> SBJ_setup_parameter;

struct SBJ_param_windows_v1
 {

33

uint32_t cashout_window_seconds = 0; // SBJ_CASHOUT_WINDOW_SECONDS
uint32_t reverse_auction_window_seconds = 0; // SBJ_REVERSE_AUCTION_WINDOW_SECONDS

};

struct SBJ_param_vote_regeneration_period_seconds_v1
 {

uint32_t vote_regeneration_period_seconds = 0; // SBJ_VOTE_REGENERATION_SECONDS
uint32_t votes_per_regeneration_period = 0;

};

struct SBJ_param_rewards_v1
 {

uint128_t
uint16_t
uint16_t
curve_id
curve_id

content_constant = 0;
percent_curation_rewards = 0;
percent_content_rewards = 0;
author_reward_curve;
curation_reward_curve;

};

struct SBJ_param_allow_downvotes
 {

bool value = true;
};

typedef static_variant<
SBJ_param_windows_v1,
SBJ_param_vote_regeneration_period_seconds_v1
,SBJ_param_rewards_v1,
SBJ_param_allow_downvotes
> SBJ_runtime_parameter;

UIs which allow inspecting or setting these parameters should be aware of the type and
scale of each parameter. In particular, percentage parameters are on a basis point scale
(i.e. 100% corresponds to a value of SBJ_100_PERCENT = 10000), and UIs or other
tools for creating or inspecting transactions must use the basis point scale.

Parameter constraints

Several dynamic parameters must be constrained to prevent abuse scenarios that could
harm token users.

• 0 < vote_regeneration_seconds < SBJ_VESTING_WITHDRAW_INTERVAL_SECONDS
• 0 <= reverse_auction_window_seconds + SBJ_UPVOTE_LOCKOUT < cashout_window_
seconds

< SBJ_VESTING_WITHDRAW_INTERVAL_SECONDS

SBJvesting semantics

SBJs have similar vesting (powerup / powerdown) semantics to SBJ. In particular:

• SBJs can be “powered up” into a vesting balance.

34

•

• SBJs in a vesting balance can be “powered down” over 13 weeks (controlled by static
SBJ_VESTING_WITHDRAW_INTERVALS, SBJ_VESTING_WITHDRAW_INTERVAL_
SECONDS
parameters).
Voting is affected only by powered-up tokens.

• Vesting balance cannot be transferred or sold.

Additionally, some token inflation may be directed to vesting balances. These newly
“printed” tokens are effectively split among all users with vesting balances, proportional
to the number of tokens they have vested. As the number of tokens printed is independent
of users’ vesting balances, the percentage rate of return this represents will vary depending
on how many tokens are vested at a time.

Content rewards

Tokens flow from SBJemissions into the reward fund. The blockchain uses algorithms

to decide:

• (1) How to divide the token-wide rewards among posts.

• (2) How to divide rewards within a post among the author and curators (upvoters)
of that post.

The algorithms to solve these problems operate as follows:

• (1) Posts are weighed against other posts according to the reward curve or rc.

• (2a) The curators collectively receive a fixed percentage of the post, specified by the
curation_pct parameter.

• (2b) The author receives the remainder (after applying any beneficiaries or lim-
ited/declined author reward).

• (2c) Curators are weighted against other curators of that post according to the
curation curve or cc.

Figure 7: Flow of initial tokens and SBJemissions

35

Curve definitions

The reward curve can be linear or quadratic. The linear reward curve rc(r) = r passes
the R-shares (upvotes) through unchanged. The quadratic reward curve rc(r) = rˆ2 +
2rs has increasing slope.

For an illustration of the meaning of reward curves, imagine grouping the most-upvoted
posts as follows:

• Section A consists of the top 10% of posts by upvotes.
• Section B consists of the next 10% of posts by upvotes.

Here’s how the rewards differ:

• With either reward curve, Section A posts will have greater rewards than Section
B posts, since they have more upvotes.

• With the quadratic reward curve, Section A posts will have an additional boost
relative to Section B posts, since Section A posts will get more rewards per upvote.

• With the linear reward curve, Section A and Section B will get the same reward
per upvote.

Possible curation curves are:

• Linear cc(r) = r
• Square-root cc(r) = sqrt(r)
• Bounded cc(r) = r / (r + 2s)

To help visualize, here are some plots called pie charts. Each colored area represents how
curation rewards are divided among curators with equal voting power.

36

Figure 8: Reward curves and curation curves

• The rectangular vertical column shows the immediate reward upon making an up-
vote.

• The colored area extending to the right shows how the rewards of a curator grow
as later curators vote.

• When both curves are linear, everyone gets the same curation reward regardless of

37

which post they vote on.
• In the case of rc_linear + cc_sqrt and rc_quadratic + cc_bounded, the same

height rectangles means everyone gets about the same initial curation reward, call
this ICR=.

• In the case of rc_linear + cc_bounded, the rectangles are decreasing in height.
This represents a progressive handicap against voting for already-popular posts, call
this ICR-.

• In the case of rc_quadratic + cc_sqrt and rc_quadratic + cc_linear, the
rectangles are increasing in height. Call this ICR+.

Fundamentally, curation is making a prediction that upvotes will occur in the future. As
reward system designers, our criterion for selecting a curve should be to reward successful
predictions. Which curve satisfies this criterion depends on the relationship between
current and future upvotes.

• If a post’s future upvotes are independent of its current upvotes, we should choose
an ICR= curve.

• If a post’s future upvotes are positively correlated with its current upvotes, we should
choose some ICR- curve, ideally somehow tuned to the amount of correlation.

• If a post’s future upvotes are negatively correlated with its current upvotes, we should
choose some ICR+ curve, ideally somehow tuned to the amount of correlation.

In practice, independence or a modest positive correlation should be expected, so an ICR=
or ICR- curve should be chosen. For SBJitself, curation was originally the quadratic ICR
=, as of the SBJhard fork 19 it is the linear ICR=.

Target votes per day

Each account has a voting_power, which is essentially a “mana bar” that fills from 0%
to 100% over time at a constant rate. That rate is determined by two parameters:

• (a) The time it takes to regenerate the bar to 100%, vote_regeneration_period_seconds.

• (b) The voting_power used by a maximum-strength vote.

The vote_regeneration_period_seconds is specified directly. For (b), instead of
specifying the voting power of a maximum-strength vote directly, instead you specify
votes_per_regeneration_period. Then the maximum-strength vote is set such that a
user casting that many max-strength votes will exactly cancel the regeneration.

38

SBJSetup GUI Sketch

39

Figure 9: SBJConfiguration

Votability and Rewardability

In this section, we introduce the concepts of votability and rewardability.

• A token is votable for a comment if the balance of that token influences the comment.
• For a given vote, each votable token of the comment is either rewardable or advisory.
• If a token is rewardable, then the vote affects the comment’s reward in that token.
• If a token is advisory, then the vote does not affect the comment’s reward in that

token.

Advisory votes do not affect rewards or voting power. However, the ranking algorithms
and estimated reward calculations still apply advisory votes, so UIs may display advisory
posts accordingly.

The votable token set is determined by allowed_vote_assets which is a comment_options_extension.

struct allowed_vote_assets
{

flat_map< asset_symbol_type, votable_asset_info > votable_assets;
};

struct votable_asset_info_v1
{

share_type
bool

max_accepted_payout = 0;
allow_curation_rewards = false;

};

typedef static_variant< votable_asset_info_v1 > votable_asset_info;

The following rules are applied to determine whether tokens are votable:

• SBJis votable for every post.
• A token is votable for a post if it appears in the post’s votable_assets.
• Otherwise, the token is not votable for this post.

And these are the rules for whether a token is rewardable:

• In order to be rewardable for a post, a token must be votable for that post.
• If, for some post/token, that post’s max_accepted_payout of the token is zero, then

the token is not rewardable for that post.
• If some voter (i.e. upvoter / downvoter) has a zero balance of a token, then that

token is not rewardable for that voter’s votes.
• If the max_accepted_payout for any non-SBJtoken is nonzero, then

the max_accepted_payout for SBJ/SBD must be at least the default
max_accepted_payout.

Implementation notes:

• For an advisory vote, all rewards are zero, including curators and beneficiaries. This
is because the blockchain applies the max_accepted_payout cap before the curator
/ beneficiary computations.

40

• Currently (as of SBJhard fork 19), the SBJblockchain does deduct voting
power for advisory SBJvotes. This behavior will be changed in a future SBJ
hard fork (SBJissue #1380).

• At most two tokens may be specified in votable_assets. This means that each
post is voted with at most three tokens (including SBJ).

• The default max_accepted_payout is stored in max_accepted_SBJ_payout_latch
member of dynamic_global_properties_object. Clients should populate
max_accepted_payout of a post based on this member, in case the default value
changes in a future version.

No consensus level restriction forces any particular post to have any particular
allowed_vote_assets. As a consequence, any post may mark itself as eligible to be
rewarded in any token. However, UI’s may impose their own non-consensus validation
rules on allowed_vote_assets, and hide posts that violate these non-consensus
validation rules.

For example, in a Hivemind community with a corresponding token, there may be a vali-
dation rule that the allowed_vote_assets specified in each post within that Hivemind
community must include the token of that community. This is a non-consensus valida-
tion rule, since the entire concept of a post existing within a Hivemind community is a
non-consensus concept. Since it is a non-consensus validation rule, no consensus logic can
enforce it. However, UIs that are aware of Hivemind communities may refuse to index or
display posts that violate this validation rule.

Static Token Parameters

•

Static parameters are configuration constants that affect the behavior of SBJs, but are

deliberately excluded from SBJ_setup_parameters or SBJ_runtime_parameters.
The reason they are designed to be non-
configurable is that allowing these parameters to

significantly deviate from the values used for SBJwould result in significant risks,
such as:

May result in a very complicated implementation.
• May result in extreme end-user frustration.
• May threaten the security and stability of the token.
• May threaten the security and stability of SBJ.

Here is the list of such static parameters:

• SBJ_UPVOTE_LOCKOUT_HF17 : Static –
This value locks out upvotes from posts at a

certain time prior to “CASH OUT”, to prevent downvote abuse immediately prior
to “CASH OUT.”

• SBJ_VESTING_WITHDRAW_INTERVAL_SECONDS
• SBJ_VESTING_WITHDRAW_INTERVALS : Static

: Static
• SBJ_MAX_WITHDRAW_ROUTES : Static
• SBJ_SAVINGS_WITHDRAW_TIME : Static
• SBJ_SAVINGS_WITHDRAW_REQUEST_LIMIT : Static
• SBJ_MAX_VOTE_CHANGES : Static
• SBJ_MIN_VOTE_INTERVAL_SEC : Static
• SBJ_MIN_ROOT_COMMENT_INTERVAL : Static
• SBJ_MIN_REPLY_INTERVAL : Static
• SBJ_MAX_COMMENT_DEPTH : Static

41

• SBJ_SOFT_MAX_COMMENT_DEPTH : Static
• SBJ_MIN_PERMLINK_LENGTH : Static
• SBJ_MAX_PERMLINK_LENGTH : Static

Mandatory token parameters

The token parameters set by SBJ_setup_parameters or SBJ_runtime_
parameters have default values. A few SBJ-equivalent parameters are specified by SBJ_
setup_operation
fields. These are the parameters which do not have a default value, and thus, must be

specified for every asset.

SBJ

• SBJ_MAX_SHARE_SUPPLY : Set by SBJ_setup_operation.max_supply
• SBJ_BLOCKCHAIN_PRECISION : Set by pow(10, SBJ_setup_operation.decimal_places)
• SBJ_BLOCKCHAIN_PRECISION_DIGITS : Set by SBJ_setup_operation.decimal_places

interaction with existing operations

• comment_payout_beneficiaries : The existing comment_payout_beneficiaries
will only redirect SBJ. In the future, comment_payout_beneficiaries func-
tionality which allows redirecting SBJrewards may be added.

• comment_options : max_accepted_payout, allow_votes only affects SBJ, see
here to restrict max_accepted_payout for assets. allow_curation_rewards affects
all tokens.

• vote_operation : Multiple tokens in the comment’s votable set vote.
• transfer_operation : Supports all SBJs.
• Escrow operations: Do not support SBJs.
• transfer_to_vesting_operation : Supports all SBJs that support vesting.
• withdraw_vesting_operation : Supports all SBJs that support vesting.
• set_withdraw_vesting_route_operation : Does not support SBJs.
• account_witness_vote_operation : SBJs do not affect witness votes.
• account_witness_proxy_operation : SBJs do not affect witness votes.
• feed_publish_operation : Feeds may not be published for SBJs.
• convert_operation : SBJs cannot be converted.
• Limit order operations : Limit orders are fully supported by SBJs trading against

SBJ.
• transfer_to_savings_operation : SBJs support savings.
• decline_voting_rights_operation : Affects SBJvotes as well as SBJvotes.
• claim_reward_balance_operation : Restrictions on this operation are relaxed to

allow any asset in any of the three fields, including SBJs.
• delegate_vesting_shares_operation : Supports all SBJs that support vesting.
• Multisig Native: There is nothing “special” about the handling of SBJoperations

signed by multiple signatures. If you set up your account to require multi-signature
security, then everything your account signs will need to be signed with multiple
signatures, as you specified. This includes operations your account does as a control
account managing an SBJ, and operations your account does as a user holding SBJ
tokens.

42

Automated Market Makers for SBJs

Automated Market Makers are smart contracts, largely based on the Bancor Protocol [2],
that may be constructed during the initial ICO setup of an SBJfor providing perpetual

liquidity to an SBJcommunity. For simplicity, Automated Market Makers in SBJmay
only trade between SBJand any given SBJ.

Setup

Basic Definitions

In this article, we’ll let s represent a quantity of SBJ, let t represent a quantity of
some token (SBJ), and let p represent a price, such that pt is SBJ-valued (i.e. if
MYTOKEN is trading at p = 0.05 SBJ/ MYTOKEN then t = 120 MYTOKEN has a val

ue of pt = (0.05 SBJ/ MYTOKEN) · (120 MYTOKEN) = 6 SBJ.

Suppose we have a market maker (or any economic agent) with a two-asset “portfolio”
(inventory) of s SBJand t tokens. If the price of tokens is t, then we may measure of
the value of this portfolio, in units of SBJ, as v(p, s, t) = s + pt.

One common portfolio management policy is to require that SBJshould be some
constant fraction r of the portfolio, i.e. s = rv(p, s, t) where 0 < r < 1. We call this
policy the constant portfolio ratio or CPR policy, and the equation s = rv(p, s, t) is the
CPR invariant.

A different portfolio management policy, discussed by the Bancor whitepaper, is called
CRR or constant reserve ratio. To discuss CRR, let us notate the total number of tokens
in existence as T . The CRR invariant is then defined as s = rv(p, 0, T − t).

Notes on Conventions

We must discuss where our convention varies from the Bancor whitepaper. At some times,
when some user Alice interacts with the market maker, Alice will remove some tokens
from her balance to get SBJfrom the market maker’s balance. On the other hand,
Bob may add some tokens to his balance in exchange for sending SBJto the market
maker’s balance.

Bancor takes the convention that in this example, the market maker destroys tokens in
its interaction with Alice, and creates tokens in its interaction with Bob. The Bancor
convention suggests the market maker is not an ordinary actor, but needs system-level
“special powers” – specifically, the privilege to operate the token printing press – in order
to function.

In this paper, we adopt the convention that the tokens sent by Alice to the market maker
are not destroyed, but are instead added to the inventory (balance) of the market maker.
Likewise, the tokens sent to Bob by the market maker are not created out of thin air; they
already exist and are merely transferred from the inventory of the market maker to Bob.
Thus, we show that the market maker is essentially an ordinary economic agent acting
according to a deterministic algorithm – it doesn’t actually need “special powers”!

43

https://about.bancor.network/static/bancor_protocol_whitepaper_en.pdf

Finite Trades

Basic Definitions

A trade is a change in the market maker’s balance from (s, t)→ (s+∆s, t+∆t). The price
at which the trade occurs is defined as p = −∆s

∆t . We restrict ourselves to well-formed
trades where either ∆s = ∆t = 0, or ∆s and ∆t are both nonzero and have opposite sign.

Theorem: A trade at price p conserves value at price p. More rigorously, if ∆s, ∆t
represent a trade at price p, then v(p, s, t) = v(p, s + ∆s, t + ∆t).

Let us more rigorously define the market maker’s state as a tuple M = (s, t, T, r). Given
some price p, we may define the restoring trade at p (also called a relaxing trade or a
relaxation) to be a trade which occurs at price p and results in a state that satisfies the
CRR invariant.

Computing the Restoring Trade

The restoring trade consists of functions ∆s(M, p) and ∆t(M, p). We may actually com-
pute these functions from the definition of price and the CRR invariant:

∆s = −p∆t

s + ∆s = rv(p, 0, T − (t + ∆t))
⇒ s− p∆t = rv(p, 0, T − t−∆t)

= rp(T − t−∆t)
= rpT − rpt− rp∆t

⇒ rp∆t− p∆t = rp(T − t)− s

⇒ ∆t = rp(T − t)− s

rp− p

=
(

1
1− r

) (
s

p
− r(T − t)

)
⇒ ∆s = −p∆t

=
(

1
1− r

)
(rp(T − t)− s)

Computing the Equilibrium Price

Given a state M , there exists some price peq(M) for which the restoring trade is zero;
call this price the equilibrium price. We may compute the equilibrium price by setting
∆s = 0:

44

= 0∆s

=
(

1
)

(rpeq(T − t)− s
1− r

)

⇒ rpeq(T − t)− s = 0
⇒ rpeq(T − t) =

⇒ peq

s

= s

r(T − t)

Theorem: Relaxation is idempotent. That is, after relaxing at price p, the equilibrium
price of the resulting state is p, and a second relaxation at price p will be a zero trade.

Example

Example: Suppose M = (1200, 3600, 12000, 0.25) and p = 0.5. Then of the T = 12000
TOKEN in existence, t = 3600 TOKEN is held by the MM, so T−t = 12000−3600 = 8400
TOKEN are “circulating” (i.e. exist in balances outside the MM). These circulating tokens

tare worth p(T −
)

)
=

=
42

4
0
2
0
00
∗level of rp(T − t

SBJtotal, so they “should be” backed by a target reserve
0.25 = 1050 SBJ.

In this example, there is “too much” SBJin the reserve, so relaxation will buy tokens
in the market. This sale will cause two effects: It will decrease the reserve SBJ, and

also decrease circulating tokens. The decrease in circulating tokens, in turn, causes the

target reserve level to decline. For every 1 SBJused to buy tokens, the target reserve
level declines by r SBJ; since r < 1 eventually the declining reserve will “catch up”
to its more slowly declining target level.

The above algebra shows that we will catch up at ∆s =
(

1
)

(rp(T − t)− s)1−r and

∆t =
(

1
1−r

) (
s (p r T − t)

)
. Running the calculations with the numbers defined in this

example gives
−

∆s −= 200 SBJand ∆t = 400 TOKEN.

Let’s check that these computed values ∆s = −200, ∆t = 400 (a) represent a trade with
price 0.5, and (b) that the CRR invariant holds for the new state Mnew = (s + ∆s, t +
∆t, T, r). Calculating p = −

∆
∆s we indeed get p = 0.5t . After this trade executes, the

market maker has snew = s + ∆s = 1200 − 200 = 1000 SBJ, and tnew = t + ∆t =
3600 + 400 = 4000 tokens.

To check condition (b), that the CRR invariant holds, we effectively repeat the analysis
in the initial paragraph of this example with the new numbers. We know Mnew =
(1000, 4000, 12000, 0.25) and p = 0.5. Then of the T = 12000 TOKEN in existence,
tnew = 4000 TOKEN is now held by the MM, so T−tnew = 12000 TOKEN
are now circulating. These circulating tokens are worth p(T

−
) = 4000

4000 = 8000
new STEEM total,

so they “should be” backed by a target reserve level of rp(
−t
− t) = 4000 ∗ 0.T 25 = 1000

SBJ. Since the target reserve level indeed exactly matches the actual reserve level of
snew = 1000 SBJ, we conclude that the CRR invariant is satisfied after this relaxing

trade.

45

Infinitesimal Trades

This section is fairly technical; the reader will need a good grasp of calculus and differential
equations to follow the results.

Setting up the Problem

Suppose we satisfy the invariant condition at some price p = peq; by the CRR invariant
s = rv(p, 0, T − t) = rp(T − t). Suppose the price then increases to p + ∆p and a relaxing
trade ∆s, ∆t occurs at this new price.

In this section we consider the limiting situation where ∆p is infinitesimally small, so we
will use Leibniz notation (dp for a small change in p, ds for a small change in s, dt for a
small change in t).

Solving the DE’s

By applying the substitution p← p+dp to the expression for ∆s computed in the previous
section, we obtain an expression which simplifies to a separable DE which can be solved:

ds = 1
1− r

(r(p + dp)(T − t)− s)

= 1
1− r

(rp(T − t) + rdp(T − t)− rp(T − t))

= 1
1− r

r(T − t)dp

= 1
1− r

(
s

p

)
dp

⇒ 1
p

dp = (1− r)
(

1
s

ds

)
⇒

∫
1
p

dp = (1− r)
∫

1
s

ds

⇒ ln(p) = (1− r) ln(s) + C0

⇒ p = k0s1−r

Similarly for t, we can start from dt = −ds/p and again obtain and solve a separable DE:

46

−dt ds/p=

= r − t)
1− r

dp/p

⇒ 1
T − t

dt

−

= − r

1−

(T

r

(
1

)
dp

1
dp

p

1− r=
r

(
1

t−

)
⇒

⇒

dt∫ p

1
p

dp =

T

1− r

r

∫
1

t− T
dt

⇒ ln(p) = 1− r ln |t− T |+ C
r

1

⇒ p k1(T − t)
−

=
1 r

r

Qualitative discussion

In a CRR market maker, where does the “backing” for newly emitted tokens come from?

One option is to lower the reserve ratio r. This option results in no immediate market

activity, but will weaken the response of the market maker to any future price changes.
This is called the “pay later” option.

Another option is to change the dynamical system’s initial conditions, i.e. edit the con-
stants of integration. This option will cause the equilibrium price peq to drop, meaning

the market maker will more aggressively sell tokens to replenish the reserve. If order

books are deep compared to the amount of emission, and there are adequate buyers for

the tokens, then the sales will be able to replenish the reserve and keep the equilibrium

price near its old value; the deep order books provide resistance to the price change being

driven by the market maker. If order books are thin compared to the amount of emission,
and there are few/no buyers for the tokens, then the equilibrium price will fall, break-
ing through the thin orders and lowering the market price. Even though few/no many

tokens were sold, so even though the absolute amount of SBJin the reserve is still

nearly/exactly the same as before, the reserve’s value relative to the now-lower market

cap of the token has increased to the reserve ratio. This option is the “pay now” option.

FAQ

Q: What is the relevance of constant portfolio ratio policy?

A: It may become a supported market maker policy in the future.

Q: Can the reserve ratio go over 100 percent?

A: No.

Q: Can the reserve ratio be exactly 100 percent?

A: Not with the system described in this paper. It might be possible to code as a special
case.

47

Q: In a CRR market maker, where does the “backing” for newly emitted tokens come
from?

A: As blockchain designers, we have two options for sourcing the “backing”. One option
is to lower the reserve ratio r. This option results in no immediate market activity, but
will weaken the response of the market maker to any future price changes. This is called
the “pay later” option.

Another option is to change the dynamical system’s initial conditions, i.e. edit the con-
stants of integration. This option will cause the equilibrium price peq to drop, meaning
the market maker will more aggressively sell tokens to replenish the reserve. If order
books are deep compared to the amount of emission, and there are adequate buyers for
the tokens, then the sales will be able to replenish the reserve to its target level while
keeping the equilibrium price near its old value. The deep order books provide resistance
to the price change being driven by the market maker.

If order books are thin compared to the amount of emission, and there are few/no buyers
for the tokens, then the equilibrium price will fall, breaking through the thin orders and
lowering the market price. Even though few/no many tokens were sold, so even though
the absolute amount of SBJin the reserve is still nearly/exactly the same as before,
the reserve’s value relative to the now-lower market cap of the token has increased to the
reserve ratio. This option is the “pay now” option.

Q: Where’s the “don’t pay” option?

A: You have to come up with some answer to where the “backing” for newly emitted

tokens will come from. Unless there’s no emission. Or unless there’s no “backing” for any

tokens. So the “don’t pay” option would be to have an SBJwith either no emission, or

no market maker.

Q: Don’t fractional exponents require floating point to implement?

A: Only if you need fairly high precision (we don’t), don’t care about bit-for-bit repro-
ducibility across compilers, OS’s, CPU’s, etc (we do), and need to do massive numbers
of calculations quickly (we don’t). A fast, approximate, all-integer implementation is
possible.

Q: Does this market maker interact with the order book through the existing limit order
system, or is it a separate set of operations?

A: In theory, it could be implemented either way. However, the likely outcome is that
the market maker will be implemented outside of order-book markets to allow its code to
be modularized. In practice, if implemented as a completely separate subsystem, people
will run arbitrage bots which will trade away any price differences between the reserve
system and the existing market system.

Q: Where do the market maker’s initial token balances come from?

A: ICO units can specify the market maker as a destination. An ICO creator may direct
a percentage of their ICO’s SBJcontributions to the MM by specifying the market
maker similarly to specifying a founder. Or may use the soft cap system to specify all
SBJabove a pre-determined amount goes to the ICO. Likewise, a fixed or percentage
amount of tokens can be added in the ICO to increase the MM’s token balance.

Q: Can someone send SBJ or tokens to the market maker?
A: Yes.

48

Q: What are the side effects of sending SBJor tokens to the market maker?

A: The constants of integration are re-initialized, meaning the equilibrium price will
change. The market maker will become more aggressive about selling the asset.

Q: Can’t this cause manipulation or appropriating the market maker’s inventory to private
profit?

A: Sending assets to the market maker does cause it to engage in trading activity which
affects the price. However, dumping an identical amount on the market will result in a
larger amount of trading activity and a larger effect on the price. If Eve is willing to
spend her tokens/SBJto manipulate prices, she would prefer the strategy of simply
dumping tokens/SBJon the market, as that strategy is more cost-effective for her.

Q: Does the market maker’s activity generate profits (losses)?

A: It depends on how you measure “profits”. If you measure the value of SBJand
tokens in some external third currency such as US dollars or bitcoins, the market maker’s
inventory, valued in that currency, can definitely increase or decrease. If people voluntarily
send SBJor tokens to the market maker, such activity definitely increases the value
of the market maker regardless of your measurement.

Another way to define profits is by the constants of integration. If both of the constants
of integration increase, or one increases while the other remains the same, a tiny increase
occurs with each trade when the market maker is in “taker” mode.

Q: What is “taker” mode? How can a market maker be set to operate in “taker” mode?

When the market maker is in taker mode, its actions are always considered to be taker
orders, which execute at the price specified by the user acting as its counterparty – this
price is always at least a little bit more favorable than the market maker is willing to
accept. When the market maker is not in taker mode, its actions are always considered

A: When orders execute, the order used to set the price is called the maker; the maker’s

counterparty is the taker. In the SBJ on-chain market (and on almost all trading
platforms) the older order is always the maker.

to be maker orders, which don’t generate changes in the constants of integration.

Taker mode is a runtime parameter that can be set by the SBJ’s control account.

Q: Who benefits from the profits of a market maker in taker mode?

A: Maybe nobody, or maybe everybody. It’s decentralized.

Q: OK, if my SBJreaches a steady price, the SBJin the reserve is basically locked

up forever. That seems not cool. How do I set it up so that this SBJcan be unlocked

for the benefits of my SBJusers?

A: Set the DRR (decaying reserve ratio) setup parameter. If you set DRR, then the reserve
ratio will slowly drop over time to a pre-set value, using its excess SBJreserves to
buy excess tokens. Setting DRR is an excellent, fair, decentralized way to return excess
capitalization to contributors in a more-popular-than-anticipated ICO that raises more
than the sponsor can effectively spend.

Q: If the reserve ratio can change over time due to pay-later emissions or DRR, it’s not
really a constant reserve ratio, is it?

49

A: No, they’re not. The reserve ratio’s called “constant” because it’s constant over the
short-term, in normal conditions, or in the conditions in Bancor which is where it was
named. But the name could be regarded as slightly misleading.

Q: If the constants of integration can change over time, they’re not really constants either,
are they?

A: No, they’re not. They’re called constants of integration because that’s their mathe-
matical role in the calculation that introduces them. Maybe they’ll be differently named
in a future version of this paper.

Q: Can I specify a contribution to a DRR to be a pay-later contribution, that increases
its reserve ratio, the increase to be eventually negated over time by future decay? Why
would I want to?

A: Yes. This is effectively contributing to the market maker, subject to the condition
that it’s not allowed to immediately dump a portion of the contribution. It’s useful if
you want to make a large contribution to a market maker without causing it to create a
disturbance by immediately dumping a significant fraction of your contribution onto the
market.

Q: Can I specify a DRR with emission to use pay-later for emissions when the RR is
decaying?

A: Yes.

Q: Is the market maker specified here equivalent to a Bancor token changer?

A: No. A Bancor token changer has multiple reserve ratios that must sum to one hundred
percent, and involves a third token that effectively represents equity in the token changer.
This paper’s market maker has none of these features.

Q: I want to have an initial “price discovery” period where people trade without action
from the market maker, then have tokens and SBJfrom the ICO gradually flow in
over time to the market maker so it has a delayed, slow start from zero to full power. Can
I do it?

A: This is called “gradual seeding” and it may be supported.

Q: What about numerical stability?

A: A market maker will be restricted to only operate when its balances exceed a certain
minimum for both assets. Also, reserve ratios will be restricted to a certain range, all
the mechanisms that can set / increase / decrease a reserve ratio will be restricted to not
allow it to move outside the range. Tentative numerical experiments suggests these limits
should be about 10,000 satoshis of both assets, 5 percent and 50 percent, respectively.
These values are subject to change based on future experimentation, worst-case analysis,
and testing.

Costs of SBJOperations And Bandwidth Rate Limit-
ing

Like SBJ, SBJs can be transferred on the SBJblockchain with zero fees. SBJ
replaces fees with bandwidth rate limiting based on the percentage of SBJan ac-

50

count has staked, which means the blockchain calculates how much SBJan account
has temporaily vested to determine how much bandwidth the account is permitted for
transfers, posting, and other operations across a period of time. In a future version of
SBJ, possesion of an account name could permit some small degree of bandwidth to
allow for even greater user experience.

Fee-less Operations Necessary for Quality User Experience

Because of bandwidth rate limiting, SBJmay never charge applications or users trans-
action fees for basic operations such as voting, posting, and transferring tokens. This lack
of fees allows SBJbased apps to compete with their non-blockchain counterparts, such
as Facebook or Reddit, which certainly do not charge fees for actions such as ‘Like’ and
‘Upvote’. If these applications did charge fees, adoption would suffer.

Decentralized Exchange

One of the valuable features of SBJs is their immediate access to functioning unmanned

markets against the liquid asset, SBJ.

Automatic Order Matching

The Decentralized Exchange (DEX) structures of SBJallow assets to be automatically
matched for best possible price when bids and asks overlap, unlike other DEXs - which
require a “man in the middle” or user-agent to match orders. Automatic, rather than
middle-man-facilitated, order matching is important for the security of SBJ-based assets,
and for the replicability and safety of DEX interfaces.

Diverse Asset Types

There are several assets that SBJusers and creators will have access to by way of the

SBJDEX: SBJ, SBD, SBJs, and Simple Derivatives (IOUs). These neighboring
assets can increase the visibility and network effect of all created SBJs.

SBJis the gateway token for assets issued on SBJ, staying relevant by acting as

the bandwidth usage measuring stick across SBJ’s SBJs. SBJis also the common

denominator asset, acting as a trading pair for all of SBJ’s SBJs.

SBD (SBJBlockchain Dollars) are an experimental asset on SBJthat relate to the
US Dollar, originating with SBJ’s launch in 2016. It is unclear if SBD will bring value
to holders of USD as they will compete, possibly poorly, with USD IOU tokens; however,
SBDs will bring value to speculators.

SBJs as described in this proposal are an important part of growing the token ecosystem,
and bringing crypto assets to the mainstream. SBJs will trade against SBJacross
the DEX.

Simple Derivatives (IOUs) will be possible via SBJissuance. For instance, if an SBJ

is issued without inflation or rewards pool properties, then the issuer can reliably back

51

https://steemit.com/steemit/@steemitblog/proposing-hardfork-0-20-0-velocity
https://steemit.com/steemit/@steemitblog/proposing-hardfork-0-20-0-velocity

the token with another real world asset such as bitcoin or USD. In this instance, the
issuer could create a business functioning as a gateway, by trading their IOU for BTC
or USD. Users would buy the IOU to gain access to the SBJDEX. This market would
add diversity and value flow to the SBJecosystem, while adding to the DEX’s network
effect.

Zero Trading and Transfer Fees

The SBJDEX is the first DEX to exist without trading fees, to the benefit of SBJ
creators and traders alike. This is made possible by bandwidth rate limiting (described

in the original SBJWhitepaper and Bluepaper), as the process by which the blockchain
calculates transaction “prices” on a per byte basis, and deducts transaction bandwidth

available to an account temporarily. These “prices” are an internal blockchain accounting

and do not debit any token balances.

Augmenting SBJs with Additional Native Contracts

There are several potentially valuable programmable contracts that are not in the im-
mediate scope of SBJs, however, these contract capabilities can be created as modular,
follow-on projects that increase the creativity entrepreneurs and communities may apply

to growth of SBJecosystems.

Community Building with Paid Positions

SBJcommunities may be bolstered with paid positions, guild roles, or jobs that are

defined in programmable, native smart contracts and matched with continuously elected

participants. Rewards received through the elected position come from some portion of

the token’s Founder allocations or donations that are sent to a paid position contract.
Paid position contracts may be defined for length of position, frequency and volume of

payments, particular token used for stake-weighted elections, percentage of the token

required for a participant to be elected, and how tokens in paid position contracts are

socialized or forfeited given no participant is elected.

The paid roles may be leveraged to support various applications, games, and businesses

built around an SBJ. A contract for a paid position, the postion’s reward schedule, and

the voting thresholds required to elect an account into a paid position may be created by

anyone for a fee. To establish the purpose of these positions, job descriptions or consti-
tutions that encourage adherence to performance expectations may be established by the

issuer or the token’s community. There can be an unlimited number of paid positions,
and paid position contracts can receive any amount of a token’s Founder allocations or

community donations. The types of paid positions that may be employed includes ev-
erything from front end developer, to evangelist, including educational content creator,
business development representative, and many roles that have yet to be imagined.

52

Democratic SBJs using Whitelist Oracles

SBJs represent completely open access to tokens, however, some entities may wish to

enable one-whitelisted-account, one-vote-per-post and X-number-of-target-votes-per-day

algorithms to increase their token’s potential for accurate wisdom-of-the-crowd content

discovery mechanics and the democratic nature of their token community. To incorporate

this, the Rewards Pool for a token will need to have a manageable whitelist that can be

enabled only at launch. Whitelist management may be handled by the entity launching

the token or outsourced to an identity management service, such as Civic or Jumio. The

service would need to publish a feed of SBJusernames for known/identified people into
the SBJblockchain, along with periodic updates to ensure accuracy of the whitelist.
As the blockchain pays rewards to a token, it verifies the account receiving the token is

on the whitelist, otherwise the tokens are returned to the reward pool.

Secondary ICOs for Contiguous Fundraising

Entrepreneurs leveraging SBJs to finance ventures may want to have the option to per-
form token auctions after the initial launch of the token. The entrepreneur can reserve

Founders tokens at launch and earmark them for later sale, however, they may want to

auction these tokens rather than sell them into Bid/Ask order books or sell them OTC.
To enable secondary auction-style ICOs, a secondary auction contract may be established.
This contract requires definitions for when an ICO begins and how long it lasts, as well as

lockup periods for the tokens purchased. The lockup period allows the tokens to be sold

at a discount to the open markets and attract investment capital that would otherwise

stay out of the market. The entrepreneur will send tokens to this contract prior to the

beginning of the auction and the tokens will be distributed to the auction participants

immediately following the close of auction period.

Bandwidth Sharing with SBJs Based on Reserve Liquidity Pools

SBJs that use ICOs to create Automated Market Makers to boost token liquidity will

inherit bandwidth rights proportionate to the amount of SBJin the Automated Mar-
ket Maker’s reserve pool. This bandwidth inheritance confers transaction rights from

SBJto all the of the “powered up” and vested SBJ, basically permitting SBJown-
ers to transact proportionate to their stake of SBJwithout owning SBJoutright.
Bandwidth Sharing based on liquidity pools enables new tokens to operate with an even

higher degree of independence while still contributing proportionate value to SBJ.

What Makes SBJs Better Suited to Application-
Specific Blockchains, such as SBJ, than Application-
General Blockchains, such as Ethereum?
Throughout the history of software and hardware development, it has been observed
that specialized systems have the potential to greatly outperform generalized systems.
An example of this can be seen in GPUs outperforming CPUs through specialization,
which was followed by ASICs outperforming GPUs for particular tasks. In turn, some

53

https://www.quora.com/Whats-the-difference-between-a-CPU-and-a-GPU-When-I-switch-on-my-computer-it-shows-GPU-information-What-does-it-mean
https://arstechnica.com/civis/viewtopic.php?t=1203755

wonder how a specialized blockchain, such as SBJ, which hosts application-specific pro-
grammability, and static mechanics embedded in consensus, is more suited to SBJs than

application-general, open-programmability blockchains, such as Ethereum, which hosts

turing-complete (“infinitely”) programmable smart contracts in a layer beyond consen-
sus, and has shown its use for discovering new cryptocurrency concepts. Without delving

into SBJ’s advantages in network effect and developer team experience, the advantages
for SBJs on SBJcan be seen through a set of computer science, consumer safety, and
economic perspectives.

SBJs are Safer and More Cost Effective in Application-Specific

Blockchain Environments

The value of SBJs in a native, specialized-programmability environment, such as SBJ,
comes from reliability of the code and efficiencies created by that reliability, whereas

application-general platforms, such as Ethereum and Tezos, require costly and highly-
assumptive audits on each new token and issuer to be deemed safe. Some of these

application-general protocols claim to have formal verification, which is valuable, how-
ever, the majority of the audit cost remains due to the need to audit the issuer’s choice

of token mechanics, choice of client for writing the code, and semantics of custom code

written to the token. Enabled by the purposeful design of its code, SBJenables SBJs
to support static (versus dynamic) crypto-economic properties that can be tuned after

the token’s launch without each change potentially harming their token holders. The

purposeful delineation between economic properties that should be static versus dynamic

makes the necessary token audits for safety simple and inexpensive to accomplish.

To elucidate this issue, imagine someone is offering you 20% of their currency in exchange

for $100 USD. You will have additional questions for the seller - essentially questions to

audit tertiary realities of the deal, such as: “does the seller maintain a right to print more

currency and therefore dilute me?” In SBJs, holders of SBJs will be able to rely on the

core economics of the SBJs they purchase due to static nature of the SBJs economic

properties - such as emissions or inflation rates, which cannot be changed by the issuer

after launch. Therefore, there can be no unexpected new currency emissions to harm

the consumer. In application-general, open-programmability blockchain protocols, such

as Ethereum and Tezos, there can be no such platform-spanning design principles and

reliabilities that protect consumer safety.

SBJ on SBJ have Aligned Proof-of-Brain Incentives with the

Core Token

Unlike SBJ, core tokens (such as ETH) that do not carry Proof-of-Brain content
rewards cannot offer monetization, primed active user-base, shared influence and boot-
strapping benefits to new SBJ communities. SBJ, on the other hand, is able to lend
its reward pool features and primed-user base to new networks, to help them bootstrap,
market, and become successful independent clusters of participants on the network. Con-
versely, some entrepreneurs will identify and choose a strategy to employ SBJs largely

independent from SBJ, and like ERC20 to Ethereum, SBJs can run while only hav-
ing SBJrun in the background to calculate the necessary bandwidth for transaction costs

.

54

https://en.wikipedia.org/wiki/Turing_completeness
https://en.wikipedia.org/wiki/Formal_verification

Whether operating with bandwidth rate limiting, or outright fees, no general purpose

blockchain will price transactions effectively for more than a small fraction of its ap-
plications, and SBJs would have reduced user experience (UX) on application-general

blockchains (such as Ethereum) as a result. The clear example is that on blockchains

such as Ethereum, there are outright fees for all transactions, however, no content pub-
lisher would expect users to pay fees to leave comments or likes on their articles. With

SBJs on Ethereum, those fees would be required, which makes Ethereum a non-starter

SBJ on SBJ Have Transaction Pricing that Contributes to a

Quality User Experience

as an SBJplatform.

Unlike Ethereum, some open-programmability blockchains of the future may use band-
width rate limiting as transaction costs, however, bandwidth rate limiting requires fine
tuning to meet the UX requirements of specific applications. As an example, in SBJ,
bandwidth rate limiting is specifically tailored to support content applications and their
user interactions by leveraging bandwidth rights according to two objects: amount of
token ownership, and account ownership - and it’s taken over a year of production-level
research to refine the optimal bandwidth allowances to each. In general purpose, open-
programmability platforms, the burden and the need for accurate pricing may hinder the
ability for applications to have their users’ actions priced appropriately, and the prob-
lem may be exacerbated as a greater myriad of potential application experiments come
to exist, stretching and sharing the blockchain’s resources. Therefore, blockchains that
support native application-specificity may yield more suitable transaction pricing, as it
pertains to the UX with tokens in related applications.

SBJs Benefit from a Blockchain that has Scaling Processes Pro-
grammed to a Specialized Set of Applications

In blockchain scaling there are cutting-edge concepts of “sharding” (originated by Vita-
lik Buterin and the Ethereum project) and “multi-threaded parallelism” (originated by
Michael Vandeberg of SBJ) that refer to how blockchains may scale by allowing multiple
operations to occur at once. General purpose platforms (such as Ethereum) are a great
test bed for these approaches to scaling, however, a platform that takes advantage of all
the product-market fit discovered by Ethereum, that then applies it to a more specialized,
iterative-upgrading model, such as SBJ, can scale its processes more effectively to meet
the demand discovered by that product-market fit.

Looking to the 90s and early 00s for analogy, when the computer science world started
writing code specifically optimized for GPUs, the boundary pushing for greater scale oc-
curred through FPGAs: field programmable gate arrays, which are chips that allow the
programmability of the set of logic gates into the form of any conceivable circuit, allow-
ing for effectively a prototype ASIC (albeit with higher power consumption). This is not
quite the same performance per watt as an ASIC, but orders of magnitude faster than
a CPU for particular tasks. As these platforms move to more and more generalizations,
such as the idea that any contract may call on any other contract, they will move fur-
ther away from ability to optimize for scale, as contracts that call on all other contracts
can reduce the capacity for multi-parallel processing to single-core processing. By anal-
ogy, like CPUs do not optimize better than GPUs, platforms like Ethereum, GEOS, and
Tezos do not optimize better than Turing-incomplete application-specific blockchains like

55

SBJ. These CPU-like blockchains will be bottlenecked by unpredictable processing re-
quirements, while the ultimate blockchain platforms will be specially-designed, like SBJ,
and will scale by optimizing in the way FPGAs were optimized for parallel algorithms.

Unlike application-general blockchains, such as Ethereum, that inherently avoid
application-specific primitives at the core of the protocol, SBJoffers a structured
public content database for storing plain text and generic structured data in tandem with
content primitives that developers can build from: Account Names, Posts, Comments,
Votes and Account Balance. These primitives benefit the blockchain-based applications
by helping to establish application-interoperability and rapid developer on-boarding.
Without these primitives, second order databases need to be structured specifically for
a blockchain-based application, which may give rise to many second-order application-
specific databases competing with each other. The rise of multiple second layer content
databases splits the potential network effect for the blockchain as a content management
system (CMS), and reduces the potential for application-interoperability, which provides
consumer safety benefits by allowing end users to move fluidly from one blockchain-based

SBJ Benefit from a Blockchain with Content Management Sys-
tem (CMS) Primitives

application to another.

Increasing Market Demand for SBJ with SBJ and

Implicit Value Drivers rather than Fees

SBJ Supply is Locked into Liquidity Pools by Automated Mar-

With the advent of SBJ, there is growing demand for users to hold SBJ, because
users need to increasingly hold SBJin order to participate, consume, and use SBJ
services at a rate maximally commensurate with their growing potentials in respective

SBJ ecosystems. Put simply, as power users are growing their earning potential in SBJ

communities, they need more SBJ to achieve the bandwidth allowance needed to
perform at their highest possible rate of return in SBJ ecosystems. At an application

level, the demand for bandwidth may be satisfied by users or by businesses, which can

SBJ Purchased for Transaction Bandwidth Enables Maximally

Profitable Participation across SBJ

There are several new value drivers to SBJ with the creation of SBJ.

s

delegate surplus bandwidth to their users.

ket Makers

Each SBJ that leverages Automated Market Makers augments the ratio of demand for SBJ
to available supply of SBJ. The effect of the Automated Market Maker to
SBJ is that each Automated Market Maker represents a permanent holding pool for SBJ ,
which represents a decrease in available supply. Given demand were to stay

56

https://en.wikipedia.org/wiki/Content_management_system

equal, the price of SBJis caused to rise with the advent of each new Automated
Market Maker.

From a potential utility perspective, demand for SBJincreases as each SBJis created
with Influence Sharing for SBJPower over a SBJ’s rewards pool. The advent of each

trace of SBJPower-based Shared Influence over an SBJ’s Reward Pool gives new rights

and usage to SBJ, which in turn drives demand for SBJ. These rights can also

SBJ and SBJ Demand Increases with Advent of New Powers

of Influence

be granted from SBJto SBJ, and the flow of value follows an identical pattern.

At a platform level, other cause for demand may include exclusive financing opportunities,
such as ICOs, which attract new capital into ecosystems, first flowing into the base asset,
SBJ, and then flowing into SBJs. Increased capital in the ecosystem due to ICOs
always presents an opportunity for net positive capital retained in SBJ, and at worst,
a wash on the value of the base asset, where all of the SBJis sold by the organization
making the offering. The example of the worst case scenario is that an ICO occurs and

$100 USD buys SBJto buy the ICO’d SBJ, then 100% of the SBJreceived by the
ICO is sold for USD - and no explicit net effect related to the value of SBJ. However,
even when the net effect contribution of an ICO to the value of SBJis apparently zero
, it is an implicit net benefit in terms of attention received by SBJand the SBJ ecosystem
, if we consider all new attention valuable. Further, it is reasonable to expect,
based on the behavior of ICOs in Ethereum, that the majority of the SBJreceived
by the ICO’ing organization will continue to be held on a speculative or promissory basis,

SBJ Demand Increases with Proliferation of SBJ ICOs

therefore creating holding value.

SBJ: The World’s Advertising Network

Along with these new value creating mechanisms, it is imperative to recognize the original

value created for SBJas an implicit attention and advertising network that now
applies to all SBJs that utilize Proof-of-Brain rewards. Smart Media Tokens, such as

SBJ, have inherent curation properties, such as their Rewards Pools, that give them
reliability and credentials as an implicit advertising network. The Rewards Pool in SBJs

demands that fully-SBJ-integrated interfaces, such as SBJit.com, respect the pending
SBJpayouts on posts and then rank these posts from highest to lowest pending payout

in pages often referred to as “Trending” - such that the posts can be audited by the

community of SBJholders. The effect of this, which applies equally to SBJas other
SBJs, is a sorted “Trending” page that users (bloggers, vloggers, advertisers) can reliably

use to evaluate the potential returns on buying higher placement on the page to attain

more attention, and then these participants make decisions to buy or rent SBJand
SBJs to promote content. Through this process, as advertisers choose to buy and

rent SBJ/SBJs to gain exposure, demand for SBJ/SBJs increases. These value
driving properties can be described in a way similar to “Ethereum: the world computer”,
but instead as “SBJ: The world’s advertising network.”

57

Shared Tools for Account Creation, Key Signing, and Wallet Functions

Several shared tools exist to support applications that wish to outsource signup, trans-
action signing, and wallet functions - such as SBJ Connect. SBJ Connect enables
applications to support SBJs while the applications are backed by entrepreneurs who

SBJ Ecosystem Support for SBJ

Integrating SBJ into Websites and Apps

APIs and Documentation

To be continuously updated for SBJs. Current SBJAPIs exist here: http://SBJ.
readthedocs.io/en/latest/index.html and https://SBJit.github.io/SBJit-docs/

may have little to no cryptocurrency experience.

Conclusion

Through a combination of specialized designs for open asset-issuance, bandwidth rate lim-
iting as transaction costs, permanent-availability of content, real-time transaction speeds,
autonomous distribution of tokens, decentralized exchange, automated market making
and ICO contracts, SBJoffers the premier token protocol for publishers across the
internet.

References

[1] SBJit, Inc., 2017. SBJBluepaper. A protocol for bringing smart, social cur-
rency to publishers and content businesses across the internet. (https://www.SBJ.io/
SBJ-bluepaper.pdf)

[2] Eyal Hertzog, Guy Benartzi & Galia Benartzi, 2017. Bancor Protocol. Continuous
Liquidity and Asynchronous Price Discovery for Tokens through their Smart Contracts.
(https://about.bancor.network/static/bancor_protocol_whitepaper_en.pdf)

Appendix

Implementation Notes

Here is a timeline / state diagram of the events in an SBJlaunch:

58

http://steem.readthedocs.io/en/latest/index.html
http://steem.readthedocs.io/en/latest/index.html
https://steemit.github.io/steemit-docs/
https://v2.steemconnect.com/
https://www.steem.io/steem-bluepaper.pdf
https://www.steem.io/steem-bluepaper.pdf
https://about.bancor.network/static/bancor_protocol_whitepaper_en.pdf

SBJ

Figure 10: Timeline of SBJ Launch

naming standards

• An SBJname should consist of 3-10 uppercase ASCII letters (A-Z).
• An SBJname should not equal SBJ, SBD or VESTS.

Asset directory standards

A directory maps each NAI to one of the following states:

Listed
Deprecated
Unlisted
Blacklisted

Each possible asset name is mapped to one of the following states:

Free
Reserved

59

A Listed or Deprecated NAI has an associated name, which should be listed as Reserved
in the mapping.

UIs may provide asset directory union functionality to augment directories by combining
multiple asset directories into a single asset directory. Asset directory union should use
the following algorithm to resolve situations where an NAI is listed differently by different
directories:

• (1) If the NAI is Blacklisted in any component directory, return Blacklisted.

• (2) If the NAI is Listed or Deprecated in multiple component directories, and
all of the component directories do not agree on the associated name, return
Unlisted.

• (3) If the NAI is Listed in at least one component directory, return Listed.

• (4) If the NAI is Deprecated in at least one component directory, return
Deprecated.

• (5) Return Unlisted.

Likewise, here are the rules for resolving names listed differently by different directories:

• (1) If the name is Reserved in any component directory, return Reserved.

• (2) Return Free.

A dynamic directory (based on a URL or blockchain account) should not be cached more
than 5 minutes.

UI guidelines for SBJnames

• A UI may, but need not, have a default asset directory.
• A UI may choose to hide unlisted NAIs.
• A UI should allow users to override or augment the UIs defaults with their own

asset directories.
• A UI should reconsider hiding unlisted NAIs in which the user has actively trans-

acted.

Operational guidelines for asset directories

• An asset directory should not confuse users by setting a well-known NAI to refer to
a different name, or setting a well-known name to refer to a different NAI.

• An asset directory should make the process for listing clear to both SBJ creators
seeking to add their asset to the directory, and UI developers considering adding
the directory to their UI.

Asset directory formats

URL and file-based asset directories will be a JSON format. The details will be devel-
oped concurrently with the implementation. Blockchain-based asset directories will use
a custom JSON operation. Again, the details will be developed concurrently with the
implementation.

60

Unit Tests

The details of the unit tests will be developed concurrently with the implementation.

61

	Document Metadata
	Smart Media Tokens (SMTs)
	A Token Protocol for Content Websites, Applications, Online Communities and Guilds Seeking Funding, Monetization and User Growth

	Introduction
	Leveraging Tokens for Autonomous User Growth
	New Fundraising Opportunities
	Immediate Liquidity
	Shared Bootstrap Tools
	Monetizing with Shared Token Rewards
	Can My Entity Participate in SMTs?
	Use Cases
	1 - Content Publishers - Single Token Support
	2 - Forums - Multiple Token Support
	3 - Comments Widget for Online Publishers
	4 - Sub-Community Moderators and Managers
	5 - Arbitrary Assets - Tokens Representing Real World Assets

	Owner's manual
	Create a control account
	Control account security
	Token consensus

	Token Generation and Initialized Parameters
	SMT object creation
	SMT pre-setup
	SMT setup
	Token units
	Unit ratios
	Cap and min
	Hidden caps
	Generation policy data structure
	Examples and rationale
	Launch
	Full JSON examples
	Inflation Parameters
	Named token parameters

	Parameter constraints
	SMT vesting semantics
	Content rewards
	Curve definitions
	Target votes per day
	SMT Setup GUI Sketch
	Votability and Rewardability
	Static Token Parameters
	Mandatory token parameters
	SMT interaction with existing operations

	Automated Market Makers for SMTs
	Setup
	Basic Definitions
	Notes on Conventions

	Finite Trades
	Basic Definitions
	Computing the Restoring Trade
	Computing the Equilibrium Price
	Example

	Infinitesimal Trades
	Setting up the Problem
	Solving the DE's

	Qualitative discussion
	FAQ

	Costs of SMT Operations And Bandwidth Rate Limiting
	Fee-less Operations Necessary for Quality User Experience

	Decentralized Exchange
	Automatic Order Matching
	Diverse Asset Types
	Zero Trading and Transfer Fees

	Augmenting SMTs with Additional Native Contracts
	Community Building with Paid Positions
	Democratic SMTs using Whitelist Oracles
	Secondary ICOs for Contiguous Fundraising
	Bandwidth Sharing with SMTs Based on Reserve Liquidity Pools

	What Makes SMTs Better Suited to Application-Specific Blockchains, such as Steem, than Application-General Blockchains, such as Ethereum?
	SMTs are Safer and More Cost Effective in Application-Specific Blockchain Environments
	SMTs on Steem have Aligned Proof-of-Brain Incentives with the Core Token
	SMTs on Steem Have Transaction Pricing that Contributes to a Quality User Experience
	SMTs Benefit from a Blockchain that has Scaling Processes Programmed to a Specialized Set of Applications
	SMTs Benefit from a Blockchain with Content Management System (CMS) Primitives

	Increasing Market Demand for STEEM with SMTs and Implicit Value Drivers rather than Fees
	STEEM Purchased for Transaction Bandwidth Enables Maximally Profitable Participation across SMTs
	STEEM Supply is Locked into Liquidity Pools by Automated Market Makers
	STEEM and SMT Demand Increases with Advent of New Powers of Influence
	STEEM Demand Increases with Proliferation of SMT ICOs
	Steem: The World's Advertising Network

	Steem Ecosystem Support for SMTs
	Integrating SMTs into Websites and Apps
	APIs and Documentation
	Shared Tools for Account Creation, Key Signing, and Wallet Functions

	Conclusion
	References
	Appendix
	Implementation Notes
	SMT naming standards
	Asset directory standards
	UI guidelines for SMT names
	Operational guidelines for asset directories
	Asset directory formats

	Unit Tests

